Year One Induction Lecture

Ulrich Berger

25 September 2003
Overview

Faces
Studying Computer Science
Dos and don’ts
Final Year Project
Infos
Faces

Lecturing staff and their research interests.
Phil Grant (Senior lecturer)

Logic Programming and expert systems.
Multimedia communications.
Parallel processing.
Evolutionary computing.

Head of Department
Dean of Science
John Tucker (Professor)

Mathematical theories of specification and computation. Topological data types. Synchronous concurrent algorithms and their application. Logic, algebra and applications.

Min Chen (Professor)

Computer Graphics and visualisation.
Multimedia communications.
Computational geometry.
Distributed computing.
Faron Moller (Professor)

Models of concurrent computation. Modal and temporal logic. Equivalence and model checking of infinite state systems.

CS-116 Modelling Computing Systems
Mike Webster (Professor)

Numerical analysis.
Computational fluid dynamics.
Parallel processing.
Multimedia.
Neal Harman (Lecturer)

Algebraic specification of microprocessors. Algebraic specification

: Induction Lecture 25 September 2003
languages and environments. Formal specification methodologies.
Mark Jones (Lecturer)

Induction Lecture 25 September 2003
Markus Roggenbach (Lecturer)

Mathematical theories of specification.
Algebraic specification.
Process algebra.
Tools support
for specification languages.
Programming languages.

CS-132 Algorithms and Computation
Anton Setzer (Lecturer)

Logic, proof theory, type theory, and programming with dependent types.

: Induction Lecture 25 September 2003
Theory of object oriented programming. Theorem proving.
John Sharp (Lecturer)

Data flow computing.
Program design environments.
Parallel Processing.
Functional programming.

CS-121 Data Structures
Roger Stein (Lecturer)

Knowledge based systems.
Verification.
Intelligent machine interfaces.

CS-134 Professional Issues
and Software Engineering
Barry Blundell (Lecturer)

3D volumetric display.

CS-113 From Languages to Hardware
Oliver Kullmann (Lecturer)

Complexity Theory.
Algorithms for hard problems.
Combinatorial optimisation.
Combinatorics.
Propositional proof systems.
Satisfiability problem and generalisations.
UB (Lecturer)

Logic, proof theory and applications.
Domain theory.
Theorem provers and program synthesis.

CS-125 Logic Programming
Head of year One

: Induction Lecture 25 September 2003
Andy Gimblett (Tutor)

Formal methods.
Operating systems.
Data communications
and networks.

CS-101 Computing Skills
Chris Whyley (Tutor)

Data structures.
Object technology.
Compilers.
Volume graphics.

CS-111 Program Design
CS-131 Programming Laboratory
Edwin Beggs (Lecturer, Mathematics)

Operator Algebras.
Noncommutative differential structures.
Non-trivially associated tensor categories.
Hopf algebras.
Integrable field Theories.

MAM111
Logic and Foundation of Mathematics

: Induction Lecture 25 September 2003
Roger Hindley (Lecturer, Mathematics)

Mathematical logic.
Lambda-calculus.
Combinatory logic.
Type-theory.

MAM113
Mathematics for Computation
Studying Computer Science

Year One

10 compulsory courses. Lab classes, weekly tutorials, all compulsory. Exams at the end of each teaching block. Marks do not count towards the final degree.
Progression rules for Year One:

- All core modules passed ($\geq 40\%$). Core modules are:
 - CS-111 Program Design
 - CS-116 Modelling Computing Systems
 - CS-121 Data Structures
- All modules $\geq 20\%$.
- At least 80 credits (120 possible).
Year Two

All 12 courses compulsory. Tutorials, group project, coursework, all compulsory. Exams.
At the end of Year Two chose from Project Selection Brochure your Final Year Project.
Industrial Placements.

Final Year

Project compulsory (30 credits). Choose 9 courses (10 credits each) from given list. Exams.
Why maths matters

Computer Science (like any other science) emphasizes understanding and analysis.

This requires abstraction, that is, concentration on the essential aspects of a problem while omitting less important details.

The result of abstraction is a simplified (but possibly still rather complex) model of the original problem that can be understood and analysed.

For this we need the language and methods of mathematics.
We teach exactly the maths you need, starting almost from scratch.

Therefore, it doesn’t matter whether you have A-levels in maths or not.

Maths is needed also for apparently ‘practical’ subjects (like e.g. Computer Graphics).

Conversely problems in computer science have initiated fascinating new developments in mathematics.

Believe it or not, computer science maths is great fun.
Dos and Don’ts

Do

• be ahead (not behind)
• meet deadlines (coursework, reports)
• attend lectures, practicals and tutorials (will be monitored!)
• ask
 ○ in or after the lecture
 ○ in the tutorials
 ○ in (joint) appointments (not only shortly before the exams)

: Induction Lecture 25 September 2003
○ fellow students
Don’t be complacent,
don’t plagiarize,
don’t panic,
don’t wait.
Some statistics: CS-125 Logic Programming
first class (marks $\geq 70\%$) 20%
failure (marks $< 40\%$) 32%

Average marks: 48%

first class result average attendance $> 80\%$
failure average attendance $< 50\%$

attendance $> 80\%$ average result 66%
attendance $< 50\%$ average result 36%

: Induction Lecture 25 September 2003
Final Year Project

Your Final Year Project will be a substantial piece of scientific work. It has crucial influence on your final mark.

At our Undergraduate Colloquium at Gregynog you will have the opportunity to give a scientific talk on your project (along with other invited speakers from academia and industry).

You will learn how to write a good scientific document and how to give a good scientific talk in your first year tutorials.
Annual Undergraduate Student Colloquium
http://www.swan.ac.uk/compsci/undergrad/gregynog/

: Induction Lecture 25 September 2003
Pictures taken by students last year.

“Rather like Hogwarts, there were lots of stairs, although somewhat disappointingly they remained stationary.
throughout.”
Infos

- **Timetable** http://cs-svr1.swan.ac.uk/ (Oliver Kullmann)
- **First lecture** Program Design (Chris Whyley), Grove-LT, Monday 29/9, 10 am.
- **First tutorials** Week beginning on 6 October, tutorial allocation via email and list on notice board (2nd floor).
- Please hand in **Tutorial Allocation Form** tomorrow, 26 September (the date on the form is incorrect).
- **Library Induction** Thursday 2nd October, 9-12 am
(3 sessions).

- **Late enrolment** Tomorrow, 9-15, Robert Recorde Room.
- **Student Representatives** Please let me know by Friday, 3rd October whether you want to put yourself forward. I’ll remind you via e-mail.

- Please hand in coursework with **form attached** in the **Students Office, room 206** (not at the lecturer’s office).

- Most questions are answered in the **Course Handbook**!
- Please check your module selection:
 - http://adminwww.swan.ac.uk
○ username: your student number
○ password: your date of birth, for example 23/04/1983
○ Click on My Student Profile Module Selection

● **Student Counselling Service**, located in the Afallon House; tel: 295592, email: student.counselling@swan.ac.uk (you should have received a brochure).

● **Free English classes for overseas students**. Contact the Centre for Applied Language Studies, ground floor, Keir Hardie building.

● Anything forgotten?
- Let’s have a drink in the Robert Recorde Room.