CS 221 Functional Programming I

Coursework 2

Question 1. Modular exponentiation is defined by

\[\text{expmod}(b, e, m) = b^e \mod m \]

where \(b, e, m \) are integers with \(b > 0, e \geq 0 \) and \(m > 0 \). Modular exponentiation plays an important role in cryptography.

Give an efficient recursive definition of \(\text{expmod} \) in Haskell using the following idea of repeated squaring: Assume \(e > 0 \) and set

\[f = e \div 2 \]
\[p = \text{expmod}(b, f, m) \]
\[c = b \mod m \]

Then one can express \(\text{expmod}(b, e, m) \) in terms of \(c, p^2 \) and \(m \) using multiplication and \(\mod \).

In order to find the solution you should distinguish the cases when \(e \) is even or odd, and you may use the fact that \(\mod \) commutes with multiplication, that is,

\[(x_1 \ldots x_k) \mod m = ((x_1 \mod m) \ldots (x_k \mod m)) \mod m \]

Use your fast implementation of \(\text{expmod} \) to compute the last 6 digits (in decimal notation) of \(x^2 \) where \(x \) is your student number. [20 marks]

Question 2. You are at city \(n \) where \(n \) is your student number. Your goal is to reach city 1. The rules for the journey are as follows:

If you are at city \(k \), then

- if \(k \) is even, go to city \(k/2 \),
- if \(k \) is odd, go to city \(3 \times k + 1 \).

Compute the list of all cities visited on your journey. What is the largest city (number) visited? [20 marks]
Question 3. Newton’s method:

- To approximate \sqrt{x} start with 1 (or any other value) as first approximation.
- If y is an approximation of \sqrt{x}, then $(y + x/y)/2$ is a better approximation.
- Stop if the approximation y is good enough, say $|y^2 - x| < 0.00001$.

Hints: Use the predefined functional until. Beware of rounding errors!

Implement a variant of the Newton method where the stopping condition is given by an upper bound for the number of iterations, and the result is the list of all approximations computed. [20 marks]

In the following we mean by a point an object of type Pt (= (Float,Float)).

Question 4. Reflect a given list of points at the x-axis. [15 marks]

Question 5. Compute the corners of a regular polygon with n corners, centered at the origin, and with one corner at point $(1, 0)$. [15 marks]

Question 6. Create the $n \times n$ grid, that is the list of all points (x, y) with $-n \leq x, y \leq n$ and x, y ”integers”. [15 marks]

Question 7. Compute the list of all points with integer coordinates that lie within the circle of a given radius around a given point. [15 marks]

Due date: 8 November 2004

Notes:
1. Use the template available at http://www.cs.swan.ac.uk/~csulrich/cs221html. It contains all functions from the Coursework 1 that might be useful.
2. Otherwise the same conditions as for Coursework 1 apply.