Chapter 5 - List Comprehensions
Set Comprehensions

In mathematics, the comprehension notation can be used to construct new sets from old sets.

\[\{x^2 \mid x \in \{1, 2, 3, 4, 5\}\} \]

The set \{1, 4, 9, 16, 25\} of all numbers \(x^2\) such that \(x\) is an element of the set \{1, 2, 3, 4, 5\}.
Lists Comprehensions

In Haskell, a similar comprehension notation can be used to construct new lists from old lists.

\[\{ x^2 \mid x \leftarrow [1..5] \} \]

The list \([1,4,9,16,25]\) of all numbers \(x^2\) such that \(x\) is an element of the list \([1..5]\).
Note:

- The expression $x \leftarrow [1..5]$ is called a **generator**, as it states how to generate values for x.

- Comprehensions can have **multiple** generators, separated by commas. For example:

```
> [(x,y) | x ← [1,2,3], y ← [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
```
Changing the order of the generators changes the order of the elements in the final list:

```plaintext
> [(x,y) | y ← [4,5], x ← [1,2,3]]
[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]
```

Multiple generators are like nested loops, with later generators as more deeply nested loops whose variables change value more frequently.
For example:

```latex
\begin{align*}
\text{> } \{(x,y) \mid y \leftarrow [4,5], x \leftarrow [1,2,3]\} \\
\{(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)\}
\end{align*}
```

\text{x \leftarrow [1,2,3]} \text{ is the last generator, so the value of the x component of each pair changes most frequently.}
Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators.

\[
[(x,y) \mid x \leftarrow [1..3], y \leftarrow [x..3]]
\]

The list \[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3) \] of all pairs of numbers \((x,y)\) such that \(x,y\) are elements of the list \([1..3]\) and \(y \geq x\).
Using a dependant generator we can define the library function that **concatenates** a list of lists:

\[
\text{concat} \quad :: \quad [[\text{a}]] \to \text{[a]}
\]

\[
\text{concat \ xss} = [x \mid \text{xs} \leftarrow \text{xss}, \ x \leftarrow \text{xs}]
\]

For example:

\[
> \text{concat } [[1,2,3],[4,5],[6]]
\]

\[
[1,2,3,4,5,6]
\]
Guards

List comprehensions can use guards to restrict the values produced by earlier generators.

\[[x \mid x \leftarrow [1..10], \text{ even } x] \]

The list \([2,4,6,8,10]\) of all numbers \(x\) such that \(x\) is an element of the list \([1..10]\) and \(x\) is even.
Using a guard we can define a function that maps a positive integer to its list of factors:

\[
\text{factors} :: \text{Int} \rightarrow [\text{Int}]
\]
\[
\text{factors } n = [x \mid x \leftarrow [1..n], n \ `\text{mod}` \ x == 0]
\]

For example:

```
> factors 15
[1,3,5,15]
```
A positive integer is **prime** if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:

\[
\text{prime} :: \text{Int} \rightarrow \text{Bool} \\
\text{prime } n = \text{factors } n == [1,n]
\]

For example:

\[
> \text{prime 15} \\
False
\]

\[
> \text{prime 7} \\
True
\]
Using a guard we can now define a function that returns the list of all primes up to a given limit:

```haskell
primes :: Int -> [Int]
primes n = [x | x ← [2..n], prime x]
```

For example:

```
> primes 40
[2,3,5,7,11,13,17,19,23,29,31,37]
```
The Zip Function

A useful library function is `zip`, which maps two lists to a list of pairs of their corresponding elements.

\[\text{zip} :: [a] \rightarrow [b] \rightarrow [(a,b)] \]

For example:

\[
> \text{zip ['a','b','c']} [1,2,3,4] \\
[(‘a’,1), (‘b’,2), (‘c’,3)]
\]
Using `zip` we can define a function that returns the list of all pairs of adjacent elements from a list:

```haskell
pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)
```

For example:

```haskell
> pairs [1,2,3,4]
[(1,2),(2,3),(3,4)]
```
Using pairs we can define a function that decides if the elements in a list are sorted:

\[
\text{sorted} \quad :: \quad \text{Ord} \ a \Rightarrow [a] \rightarrow \text{Bool} \\
\text{sorted} \; xs = \\
\quad \text{and} \; [x \leq y \mid (x,y) \leftarrow \text{pairs} \; xs]
\]

For example:

\[
> \text{sorted} \; [1,2,3,4] \\
\text{True} \\
> \text{sorted} \; [1,3,2,4] \\
\text{False}
\]
Using zip we can define a function that returns the list of all **positions** of a value in a list:

\[
\text{positions} :: \text{Eq } a \Rightarrow a \to [a] \to [\text{Int}]
\]

\[
\text{positions } x \text{ } x\text{s } = \\
[i \mid (x',i) \leftarrow \text{zip } x\text{s } [0..n], x == x']
\]

where \(n = \text{length } x\text{s } - 1 \)

For example:

\[
> \text{positions } 0 \text{ } [1,0,0,1,0,1,1,0] \\
[1,2,4,7]
\]
String Comprehensions

A string is a sequence of characters enclosed in double quotes. Internally, however, strings are represented as lists of characters.

"abc" :: String

Means ['a','b','c'] :: [Char].
Because strings are just special kinds of lists, any polymorphic function that operates on lists can also be applied to strings. For example:

```haskell
> length "abcde"
5

> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]
[('a',1),('b',2),('c',3)]
```
Similarly, list comprehensions can also be used to define functions on strings, such as a function that counts the lower-case letters in a string:

\[
\text{lowsers} \:: \text{String} \rightarrow \text{Int} \\
\text{lowsers} \ x s = \\
\quad \text{length} [x \mid x \leftarrow xs, \text{isLower} \ x]
\]

For example:

\[
> \text{lowsers} \ "\text{Haskell 98}" \\
6
\]
Exercises

(1) A triple \((x, y, z)\) of positive integers is called **pythagorean** if \(x^2 + y^2 = z^2\). Using a list comprehension, define a function

\[
\text{pyths} :: \text{Int} \rightarrow [\text{(Int,Int,Int)}]
\]

that maps an integer \(n\) to all such triples with components in \([1..n]\). For example:

\[
> \text{pyths 5}
[[(3,4,5),(4,3,5)]]
\]
A positive integer is **perfect** if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension, define a function

```
perfects :: Int \rightarrow [Int]
```

that returns the list of all perfect numbers up to a given limit. For example:

```
> perfects 500
[6,28,496]
```
(3) The **scalar product** of two lists of integers \(xs\) and \(ys\) of length \(n\) is given by the sum of the products of the corresponding integers:

\[
\sum_{i=0}^{n-1} (xs_i \times ys_i)
\]

Using a list comprehension, define a function that returns the scalar product of two lists.