CS205 - Chapter 7 - Higher-Order Functions
A function is called **higher-order** if it takes a function as an argument or returns a function as a result.

\[
twice :: (a \to a) \to a \to a \\
twice f x = f (f x)
\]

twice is higher-order because it takes a function as its first argument.
Why Are They Useful?

- **Common programming idioms** can be encoded as functions within the language itself.

- **Domain specific languages** can be defined as collections of higher-order functions.

- **Algebraic properties** of higher-order functions can be used to reason about programs.
The Map Function

The higher-order library function called \texttt{map} applies a function to every element of a list.

\texttt{map} \texttt{::} (a \rightarrow b) \rightarrow [a] \rightarrow [b]

For example:

\texttt{> map (+1) [1,3,5,7]}

\texttt{[2,4,6,8]}
The map function can be defined in a particularly simple manner using a list comprehension:

\[
\text{map } f \; \text{xs} = [f \; x \mid x \leftarrow \text{xs}]
\]

Alternatively, for the purposes of proofs, the map function can also be defined using recursion:

\[
\begin{align*}
\text{map } f \; [] & = [] \\
\text{map } f \; (x:xs) & = f \; x : \text{map } f \; xs
\end{align*}
\]
The Filter Function

The higher-order library function `filter` selects every element from a list that satisfies a predicate.

\[\text{filter} :: (a \to \text{Bool}) \to [a] \to [a] \]

For example:

\[\text{filter even [1..10]} \]
\[[2,4,6,8,10] \]
Filter can be defined using a list comprehension:

```
filter p xs = [x | x ← xs, p x]
```

Alternatively, it can be defined using recursion:

```
filter p []     = []
filter p (x:xs)
    | p x       = x : filter p xs
    | otherwise  = filter p xs
```
A number of functions on lists can be defined using the following simple pattern of recursion:

\[
f [] = v \\
f (x:xs) = x \oplus f xs
\]

f maps the empty list to some value v, and any non-empty list to some function \(\oplus \) applied to its head and f of its tail.
For example:

\[
\begin{align*}
\text{sum } [] &= 0 \\
\text{sum } (x:xs) &= x + \text{sum } xs \\
\end{align*}
\]

\[
\begin{align*}
\text{product } [] &= 1 \\
\text{product } (x:xs) &= x \times \text{product } xs \\
\end{align*}
\]

\[
\begin{align*}
\text{and } [] &= \text{True} \\
\text{and } (x:xs) &= x \&\& \text{and } xs \\
\end{align*}
\]
The higher-order library function \texttt{foldr} (fold right) encapsulates this simple pattern of recursion, with the function \(\oplus\) and the value \(v\) as arguments.

For example:

\begin{verbatim}
sum = foldr (+) 0
product = foldr (*) 1
or = foldr (||) False
and = foldr (&&) True
\end{verbatim}
Foldr itself can be defined using recursion:

```
foldr :: (a → b → b) → b → [a] → b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)
```

However, it is best to think of foldr **non-recursively**, as simultaneously replacing each (:) in a list by a given function, and [] by a given value.
For example:

\[
\begin{align*}
\text{sum } [1,2,3] &= \text{foldr (+) 0 [1,2,3]} \\
&= \text{foldr (+) 0 (1:(2:(3:[])))} \\
&= 1+(2+(3+0)) \\
&= 6
\end{align*}
\]

Replace each (:) by (+) and [] by 0.
For example:

\[
\text{product } [1,2,3] = \text{foldr } (*) \ 1 \ [1,2,3] = \text{foldr } (*) \ 1 \ (1:(2:(3:[]))) = 1*(2*(3*1)) = 6
\]

Replace each (:) by (*) and [] by 1.
Other Foldr Examples

Even though foldr encapsulates a simple pattern of recursion, it can be used to define many more functions than might first be expected.

Recall the length function:

\[
\begin{align*}
\text{length} & : [a] \rightarrow \text{Int} \\
\text{length} \; [] & = 0 \\
\text{length} \; (_{:}\;xs) & = 1 + \text{length} \; xs
\end{align*}
\]
For example:

\[
\text{length } [1,2,3] = \text{length } (1:(2:(3:[]))) = 1+(1+(1+0)) = 3
\]

Hence, we have:

\[
\text{length } = \text{foldr } (\lambda n \rightarrow 1+n) 0
\]

Replace each (:) by \(\lambda n \rightarrow 1+n \) and [] by 0.
Now recall the reverse function:

\[
\begin{align*}
\text{reverse } [] &= [] \\
\text{reverse } (x:xs) &= \text{reverse } xs ++ [x]
\end{align*}
\]

For example:

\[
\begin{align*}
\text{reverse } [1,2,3] &= \\
&= \text{reverse } (1:(2:(3:[]))) \\
&= ((([] ++ [3]) ++ [2]) ++ [1]) \\
&= [3,2,1]
\end{align*}
\]

Replace each (:) by \(\lambda x \ xs \rightarrow xs ++ [x] \) and [] by [].
Hence, we have:

\[
\text{reverse} = \\
\quad \text{foldr} \ (\lambda x \ xs \rightarrow xs ++ [x]) \ []
\]

Finally, we note that the append function (++) has a particularly compact definition using foldr:

\[
(+) ys) = \text{foldr} \ (:) \ ys
\]

Replace each (:) by (:) and [] by ys.
Why Is Foldr Useful?

- Some recursive functions on lists, such as sum, are simpler to define using foldr.

- Properties of functions defined using foldr can be proved using algebraic properties of foldr, such as fusion and the banana split rule.

- Advanced program optimisations can be simpler if foldr is used in place of explicit recursion.
Other Library Functions

The library function (.) returns the composition of two functions as a single function.

\[
(\cdot) \; :: \; (b \to c) \to (a \to b) \to (a \to c)
\]

\[
f \cdot g \; = \; \lambda x \to f \; (g \; x)
\]

For example:

\[
\text{odd} \; :: \; \text{Int} \to \text{Bool}
\]

\[
\text{odd} \; = \; \text{not} \; \cdot \; \text{even}
\]
The library function `all` decides if every element of a list satisfies a given predicate.

\[
\text{all} \quad :: \quad (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow \text{Bool}
\]

\[
\text{all } p \text{ } xs = \text{and} \ [p \ x \mid x \leftarrow xs]
\]

For example:

\[
> \text{all even } [2,4,6,8,10] \\
\text{True}
\]
Dually, the library function `any` decides if at least one element of a list satisfies a predicate.

\[
\text{any} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow \text{Bool}
\]

\[
\text{any } p \text{ xs} = \text{or } [p \text{ x} \mid \text{x }\leftarrow \text{xs}]
\]

For example:

\[
> \text{any isSpace "abc def"}
\]

True
The library function `takeWhile` selects elements from a list while a predicate holds of all the elements.

\[
\text{takeWhile} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a] \\
\text{takeWhile} \ p \ [] \ = \ [] \\
\text{takeWhile} \ p \ (x:xs) \\
\quad | \ p \ x \ = \ x : \text{takeWhile} \ p \ xs \\
\quad | \ otherwise \ = \ []
\]

For example:

\[
\text{> takeWhile isAlpha "abc def"} \\
"abc"
\]
Exercises

(1) What are higher-order functions that return functions as results better known as?

(2) Express the comprehension \([f \ x \mid x \leftarrow xs, \ p \ x]\) using the functions map and filter.

(3) Redefine map \(f\) and filter \(p\) using foldr.