Question 1. Let \(f : A \rightarrow B \) be a function. Define \(g : \mathcal{P}(A) \rightarrow \mathcal{P}(B) \) by
\[
g(X) := f[X] := \{ f(a) | a \in X \}
\]
for every \(X \subseteq A \).
Prove that \(f \) is injective if and only if \(g \) is injective. \(\text{[5 marks]} \)

Question 2. Prove that \(\Sigma_{i \leq n} 1 + 4i = 2n^2 + 3n + 1 \) for all \(n \in \mathbb{N} \). \(\text{[4 marks]} \)

Question 3. Prove or disprove the following statements:
(a) For every set \(A \) the powerset, \(\mathcal{P}(A) \), is either finite or uncountable.
(b) For all sets \(A, B \) the sets \(A \rightarrow B \) and \(B \rightarrow A \) have the same cardinality. \(\text{[6 marks]} \)

Question 4. Write a URM-program for the function \(f : \mathbb{N} \rightarrow \mathbb{N} \), \(f(x) := 2x \). \(\text{[5 marks]} \)

Question 5. Show that the factorial function, \(x! \), is primitive recursive. \(\text{[3 marks]} \)

Question 6. Let \(f : \mathbb{N}^2 \rightarrow \mathbb{N} \) be a function satisfying for all \(x, y \in \mathbb{N} \) the equations
\[
f(x, 0) = x
\]
\[
f(x, y + 1) = f(x!, y)
\]
(a) Prove that \(f(x!, y) = f(x, y)! \) for all \(y, x \in \mathbb{N} \).
(b) Use (a) and Question 4 to show that \(f \) is primitive recursive. \(\text{[7 marks]} \)

Question 7. In the following we only consider URMs with a fixed number of registers, say 10 registers. A total universal URM is a URM \(U \) such that \(U^{(2)} \) is total and that is able to simulate any total URM in the following sense. Given a URM \(P \) such that \(P^{(1)} \) is total, there is a number \(e \) such that for all \(x \) we have \(P^{(1)}(x) = U^{(2)}(x, e) \).
Prove that a total universal URM does not exist. \(\text{[10 marks]} \)

Question 8. Compute the normal form of \(c_2c_2 \). \(\text{[5 marks]} \)

Question 9. Use the Church-Rosser property of \(\beta \)-reduction to show that the relation \(M =_\beta N \) is an equivalence relation on the set of all lambda-terms. \(\text{[5 marks]} \)