OKlibrary  0.2.1.6
OKlib::MetaProgramming::Power< b, e > Class Template Reference

Numerical template metafunction: Power<b,e>::value = b^e. More...

#include <Numerical.hpp>

Inheritance diagram for OKlib::MetaProgramming::Power< b, e >:
long_

Detailed Description

template<long b, unsigned e>
class OKlib::MetaProgramming::Power< b, e >

Numerical template metafunction: Power<b,e>::value = b^e.

Todo:
How to generalise Power (and other similar functions), so that boost::mpl::long_ is no longer hardcoded? One problem is, that a corresponding template template parameter X should be defaultet to boost::mpl::long_, and so must come first, but the types of b and e need to be X::value_type ? Perhaps a helper construction is needed. Another problem is, whether we can introduce X as a template template parameter, and write nevertheless X::value_type ? This likely is not possible. Like the concept of a metafunction class, perhaps we should have X as a *class*, with a nested template "apply", which yields the "concrete value" ?! So X is a class with type member X::value_type, and X::template apply<n> yields the concrete value (type) ?! X would be a model of the concept IntegralConstantMetafunction. Power then would be template <class ICM, typename ICM::value_type b, unsigned e> struct Power : ICM::template apply<b * Power<ICM, b, e-1>::value> {}; template <class ICM, typename ICM::value_type b> struct Power<ICM, b, (unsigned 0)> : ICM::template apply<1> {};
Todo:
Code for the factorial function:
typedef unsigned int factorial_input_type;

template <typename Integral, factorial_input_type n>
struct factorial : boost::mpl::integral_c<Integral, Integral(n) * factorial<Integral, n - 1>::value> {};
  
template <typename Integral>
struct factorial<Integral, 0> : boost::mpl::integral_c<Integral, 1> {};

template <class Numeric>
struct Factorial : factorial<typename Numeric::type::value_type, Numeric::type::value> {};

tested with

{
   typedef unsigned long int out_type;
 
   const Numerical::factorial_input_type n = 12;
   assert((Numerical::factorial<out_type, 0>::type::value == out_type(1)));
   assert((Numerical::factorial<out_type, n>::type::value == out_type(479001600)));
   
   assert((Numerical::factorial<out_type, 0>::value == out_type(1)));
   assert((Numerical::factorial<out_type, n>::value == out_type(479001600)));

   assert((Numerical::Factorial<boost::mpl::integral_c<out_type, 0> >::value == out_type(1)));
   assert((Numerical::Factorial<boost::mpl::integral_c<out_type, n> >::value == out_type(479001600)));
 }
 {
   typedef unsigned char out_type;
   const Numerical::factorial_input_type n = 6;

   assert((Numerical::factorial<out_type, n>::value == out_type(208)));
   assert((Numerical::factorial<unsigned int, n>::value == 720));
 }
Todo:
An alternative:
#include <boost/mpl/int.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/multiplies.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/prior.hpp>

template <class N>
struct factorial
  : boost::mpl::if_<
  boost::mpl::bool_<N::value == 0>,
  boost::mpl::int_<1>,
  boost::mpl::multiplies<N, factorial<typename boost::mpl::prior<N>::type> >
  >::type 
  {};

Definition at line 104 of file Numerical.hpp.


The documentation for this class was generated from the following file: