Minimal unsatisfiability and deficiency: recent developments

Oliver Kullmann

Computer Science Department
Swansea University

International Workshop on Graph Structure and Satisfiability Testing
July 4, 2016
MU is the set of clause-sets, which are unsatisfiable, while removal of any clause renders them satisfiable.

- $n(F)$ is the number of (occurring) variables.
- $c(F)$ is the number of clauses.
- $\delta(F) := c(F) - n(F) \in \mathbb{Z}$ is the deficiency.

See Handbook Chapter Kleine Büning and Kullmann [8].
“Tarsi’s Lemma”

\[\forall F \in MU : \delta(F) \geq 1. \]

- Best known proof Aharoni and Linial [1].
- For an overview see the introduction of [14].

Deficiency for MU yields a complexity parameter.

- MU decision poly-time for fixed \(k \) (Fleischner, Kullmann, and Szeider [3]).
- Indeed fpt (Szeider [16]).
The most basic information about MU is given by some knowledge on the *degrees*.

Literal degrees:

\[\text{ld}_F(x) := |\{ C \in F : x \in C \}| \]

Variable degrees:

\[\text{vd}_F(v) := \text{ld}_F(v) + \text{ld}_F(\overline{v}). \]
$\mathcal{M}U_{\delta=1} = \{ F \in \mathcal{M}U : \delta(F) = 1 \}$

- These are nice formulas, with a surprising number of applications.
- In the SAT world, classification due to Aharoni and Linial [1], Davydov, Davydova, and Kleine Büning [2].
- Indeed, independently equivalent classifications in different areas have been obtained; see [14].

Characterisation becomes MUCH easier, once you know that for all $F \in \mathcal{M}U_{\delta=1}$, $n(F) \neq 0$, there exists $v \in \text{var}(F)$ with $\text{vd}_F(v) \leq 2$.

We express this as

$$\text{VDM}(1) = 2.$$
Of course, relevant open problems!

- For example concerning the *uniform* elements of $MU_{\delta=1}$; Hoory and Szeider [6], Gebauer, Szabo, and Tardos [4].
- Uniformity (constant clause-length) features a lot in hypergraph theory, while we work mostly in the unrestricted setting.
\[\mathcal{M}U_{\delta=2} = \{ F \in \mathcal{M}U : \delta(F) = 2 \} \]

- The basic characterisation is due to Kleine Büning [7].
- This concerns \textit{nonsingular} elements of \(\mathcal{M}U_{\delta=2} \) — every variable occurs at least twice positively as well as negatively.

The main open question here is:

Extend the generalisation to all of \(\mathcal{M}U_{\delta=2} \) — in a sense fusing the characterisations obtained for \(\delta = 1, 2 \).

This is needed for a better understanding of higher deficiencies.

Again, a fundamental step is to to show

\[\forall F \in \mathcal{M}U_{\delta=2}, n(F) \neq 0 \exists v \in \text{var}(F) : \text{vd}_F(v) \leq 4. \]

I.e., \(\text{VDM}(2) = 4 \)
In general (F a clause-set, C a class of clause-sets):

$$\mu_{vd}(F) := \min_{v \in \text{var}(F)} vd_F(v)$$

$$\mu_{vd}(C) := \max_{F \in C} \mu_{vd}(F)$$

$$VDM(k) := \mu_{vd}(\mathcal{M}_\delta_{=k}).$$

In [9] the fundamental bound

$$\forall k \geq 1 : VDM(k) \leq 2k$$

was shown.
Improving the bound

In [12] the upper bound $VDM(k) \leq 2k$ was improved to

$$VDM(k) \leq 1 + k + \log_2(k).$$

- Indeed a precise number-theoretical function $nM(k)$ yields the upper bound.
- This upper bound is not sharp, and the first deficiency needing a correction is $k = 6$.

The main open problem here is the precise determination of $VDM(k)$.

The sharpenings we produced unearth interesting aspects of MU; see [14] for further information.
Indeed, the upper bound $nM(k)$ is sharp for **lean** clause-sets of deficiency k.

LEAN means: no non-trivial autarkies.

This leads to interesting algorithmic consequences:

If the bound is violated, then there *exists* a non-trivial autarky.

- Indeed, the effect of the autarky reduction can be simulated.
- But to find the autarky itself (the witness) is an open problem!
- See [14] for further information.
An interesting combinatorial quantity for a clause-set F is the *number of full clauses*:

$$ fc(F) := |\{ C \in F : \text{var}(C) = \text{var}(F) \}| \in \mathbb{N}_0. $$

We have

$$ fc(F) \leq \mu vd(F). $$

So maximising the number of full clauses yields *lower bounds* on $VDM(k)$.

Let $FCM(k)$ be the maximum of $fc(F)$ for $F \in \mathcal{MU}_{\delta=k}$.

Thus $FCM \leq VDM$.
Hitting clause-sets

Indeed it helps a lot to consider *hitting clause-sets* here:

Every two clauses have a clash.

If a hitting clause-set is unsatisfiable, it is automatically MU.

\[VDH(k), FCH(k) \text{ denote the maximal min-var-degree resp. number of full clauses for hitting MU.} \]

- We conjecture \(VDH = VDM \).
- But definitely only \(FCH \leq FCM \).
Meta-Fibonacci

We show

\[S_2 \leq FCH \]

for the number-theoretic function \(S_2 \).

And indeed we conjecture equality.

- Interesting recursion-theoretic phenomena show up.
- Belong to the field of “meta-Fibonacci” functions (nested recursive calls), as introduced by Hofstadter [5].
The four fundamental quantities

To summarise the first part of the talk:

The quantities $VDM(k)$, $FCM(k)$, $VDH(k)$, $FCH(k)$ seem interesting beasts: offering a lot of depth — and good attack points!

The \textit{precise} quantities matter here, and relevant number-theoretical functions appear.

It’s part of the fundamental \textbf{Finite Patterns Conjecture}:

For every k, $\mathcal{MU}_{\leq k}$ can be characterised by \textit{finitely many patterns}.

The next frontier is $\mathcal{MU}_{\leq 3}$.
DP-reduction

\[F \leadsto \text{DP}_v(F) \]

replaces all clauses containing variable \(v \) by their (non-tautological) resolvents.

- It it “commutative” ([10, 11]).
- Maintains the hitting property.
- But in general does not maintain MU.
Singular variables occur in one sign only once.

- *Singular DP-reduction* behaves well also for MU.
- Full reduction via singular DP-reduction establishes some kind of “normal form”, via confluence and weaker forms ([13]).

The details are intriguing, and many open problems.

Also the other direction, *singular extension*, is of relevance:

- First one characterises the non-singular elements.
- Then one studies their singular extensions.
Clause-factors

In [15] we introduced a new concept for analysing MUs:

Definition
A clause-set F is called a **clause-factor** if F is logically equivalent to a single clause. F is called a **clause-factor of** F' if F is a clause-factor and $F \subseteq F'$.

It is easy to show:

Lemma

F is logically equivalent to a clause C iff the following two conditions hold:

1. $\forall D \in F : C \subseteq D$.
2. $\{ D \setminus C : D \in F \}$ is unsatisfiable.
Clause-irreducibility

If we have a clause-factor F of F', then we can “factorise” F' into
- the “residue” $\{D \setminus C : D \in F\}$,
- and the “cofactor” $(F' \setminus F) \cup \{C\}$.

This becomes trivial iff $F = \{C\}$ for $F = F'$.

Definition

If a clause-set has no trivial clause-factor, then it is called **clause-irreducible**.

For unsatisfiable hitting clause-sets,
- clause-irreducibility is surprisingly powerful,
- with good structural properties.

It seems an essential tool for classification, to reduce complexity.
Summary and outlook

I Studying the “four fundamental quantities” reveals surprising structures — if you go for the exact determination.

II Reductions are an important tool for understanding MU: first you concentrate on understanding (only) reduced cases, and then you extend.

III The reductions have good properties, and likely there is much more to come.
End

(references on the remaining slides).

For my papers see

http://cs.swan.ac.uk/~csoliver/papers.html.
Bibliography I

Bibliography III

