Week 2

Divide and Conquer

1. Growth of Functions
2. Divide-and-Conquer
 - Min-Max-Problem
3. Tutorial
General remarks

- First we consider an important tool for the analysis of algorithms: **Big-Oh**.
- Then we introduce an important algorithmic paradigm: **Divide-and-Conquer**.
- We conclude by presenting and analysing two examples.

Reading from *CLRS* for week 2

- Chapter 2.3
- Chapter 3
Growth of Functions

- A way to describe behaviour of functions \textit{in the limit}. We are studying \textit{asymptotic} efficiency.
- Describe growth of functions.
- Focus on what’s important by abstracting away low-order terms and constant factors.
- How we indicate running times of algorithms.
- A way to compare “sizes” of functions:
 - O corresponds to \leq
 - Ω corresponds to \geq
 - Θ corresponds to $=$

We consider only functions $f, g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}$.
O-Notation

\(O(g(n))\) is the set of all functions \(f(n)\) for which there are positive constants \(c\) and \(n_0\) such that

\[
f(n) \leq cg(n) \quad \text{for all } n \geq n_0.
\]

\(g(n)\) is an asymptotic upper bound for \(f(n)\).

If \(f(n) \in O(g(n))\), we write \(f(n) = O(g(n))\) (we will precisely explain this soon).
O-Notation Examples

\[2n^2 = O(n^3), \text{ with } c = 1 \text{ and } n_0 = 2. \]

Example of functions in \(O(n^2) \):

- \(n^2 \)
- \(n^2 + n \)
- \(n^2 + 1000n \)
- \(1000n^2 + 1000n \)

Also

- \(n \)
- \(n/1000 \)
- \(n^{1.999999} \)
- \(n^2/\lg \lg \lg n \)
Ω-Notation

\(\Omega(g(n)) \) is the set of all functions \(f(n) \) for which there are positive constants \(c \) and \(n_0 \) such that

\[
f(n) \geq cg(n) \quad \text{for all } n \geq n_0.
\]

\(g(n) \) is an asymptotic lower bound for \(f(n) \).
$\sqrt{n} = \Omega(\lg n)$, with $c = 1$ and $n_0 = 16$.

Example of functions in $\Omega(n^2)$:

- n^2
- $n^2 + n$
- $n^2 - n$
- $1000n^2 + 1000n$
- $1000n^2 - 1000n$

Also

- n^3
- $n^{2.0000001}$
- $n^2 \lg \lg \lg n$
- 2^{2^n}
Θ\((g(n))\) is the set of all functions \(f(n)\) for which there are positive constants \(c_1\), \(c_2\) and \(n_0\) such that

\[c_1g(n) \leq f(n) \leq c_2g(n) \quad \text{for all } n \geq n_0. \]

\(g(n)\) is an asymptotic tight bound for \(f(n)\).
\(\Theta\text{-Notation (cont’d)}\)

Examples 1

\[\frac{n^2}{2} - 2n = \Theta(n^2),\text{ with } c_1 = \frac{1}{4}, \quad c_2 = \frac{1}{2}, \text{ and } n_0 = 8.\]

Theorem 2

\[f(n) = \Theta(g(n)) \text{ if and only if } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)).\]

Leading constants and lower order terms do not matter.
Asymptotic notation in equations

When on right-hand side

$\Theta(n^2)$ stands for some anonymous function in the set $\Theta(n^2)$. $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means $2n^2 + 3n + 1 = 2n^2 + f(n)$ for some $f(n) \in \Theta(n)$. In particular, $f(n) = 3n + 1$.

When on left-hand side

No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

Interpret $2n^2 + \Theta(n) = \Theta(n^2)$ as meaning for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$.
Asymptotic notation chained together

\[2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2) \]

Interpretation:

- First equation: There exists \(f(n) \in \Theta(n) \) such that \(2n^2 + 3n + 1 = 2n^2 + f(n) \).
- Second equation: For all \(g(n) \in \Theta(n) \) (such as the \(f(n) \) used to make the first equation hold), there exists \(h(n) \in \Theta(n^2) \) such that \(2n^2 + g(n) = h(n) \).

Note

What has been said of “\(\Theta \)” on this and the previous slide also applies to “\(O \)” and “\(\Omega \)”.
Example Analysis

INSERTION-SORT(A)

1. **for** $j = 2$ to $A.length$
2. \hspace{1em} key = $A[j]$
4. \hspace{1em} $i = j−1$
5. **while** $i > 0$ and $A[i] > key$
6. \hspace{1em} $A[i+1] = A[i]$
7. \hspace{1em} $i = i−1$
8. \hspace{1em} $A[i+1] = key$

The **for** -loop on line 1 is executed $O(n)$ times; and each statement costs constant time, except for the **while** -loop on lines 5-7 which costs $O(n)$.

Thus overall runtime is: $O(n) \times O(n) = O(n^2)$.

Note: In fact, as seen last week, worst-case runtime is $\Theta(n^2)$.
Divide-and-Conquer Approach

There are many ways to design algorithms.

For example, insertion sort is incremental: having sorted $A[1..j-1]$, place $A[j]$ correctly, so that $A[1..j]$ is sorted.

Divide-and-Conquer is another common approach:

Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.
 Base case: If the subproblem are small enough, just solve them by brute force.

Combine the subproblem solutions to give a solution to the original problem.
Divide-and-Conquer Approach

There are many ways to design algorithms.

For example, insertion sort is incremental: having sorted $A[1..j-1]$, place $A[j]$ correctly, so that $A[1..j]$ is sorted.

Divide-and-Conquer is another common approach:

Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.

 Base case: If the subproblem are small enough, just solve them by brute force.

Combine the subproblem solutions to give a solution to the original problem.
Naive Min-Max

Find minimum and maximum of a list A of $n \geq 0$ numbers.

Naive-Min-Max(A)

1. $least = A[1]$
2. for $i = 2$ to A.length
3. \hspace{1em} if $A[i] < least$
4. \hspace{2em} $least = A[i]$
5. $greatest = A[1]$
6. for $i = 2$ to A.length
7. \hspace{1em} if $A[i] > greatest$
8. \hspace{2em} $greatest = A[i]$
9. return ($least, greatest$)

The for-loop on line 2 makes $n - 1$ comparisons, as does the for-loop on line 6, making a total of $2n - 2$ comparisons.

Can we do better? Yes!
Naive Min-Max

Find minimum and maximum of a list A of $n > 0$ numbers.

```python
NAIVE-MIN-MAX(A)
1 least = A[1]
2 for i = 2 to A.length
3 \hspace{1em} if A[i] < least
4 \hspace{1em} least = A[i]
5 greatest = A[1]
6 for i = 2 to A.length
7 \hspace{1em} if A[i] > greatest
8 \hspace{1em} greatest = A[i]
9 return (least, greatest)
```

The for-loop on line 2 makes $n - 1$ comparisons, as does the for-loop on line 6, making a total of $2n - 2$ comparisons.

Can we do better? Yes!
Naive Min-Max

Find minimum and maximum of a list A of $n>0$ numbers.

NAIVE-MIN-MAX(A)

1. $least = A[1]$
2. for $i = 2$ to $A.length$
 3. if $A[i] < least$
 4. $least = A[i]$
5. $greatest = A[1]$
6. for $i = 2$ to $A.length$
 7. if $A[i] > greatest$
 8. $greatest = A[i]$
9. return ($least$, $greatest$)

The for-loop on line 2 makes $n-1$ comparisons, as does the for-loop on line 6, making a total of $2n-2$ comparisons.

Can we do better? Yes!
Divide-and-Conquer Min-Max

As we are dealing with subproblems, we state each subproblem as computing minimum and maximum of a subarray $A[p \ldots q]$. Initially, $p = 1$ and $q = A.length$, but these values change as we recurse through subproblems.

To compute minimum and maximum of $A[p \ldots q]$:

Divide by splitting into two subarrays $A[p \ldots r]$ and $A[r+1 \ldots q]$, where r is the halfway point of $A[p \ldots q]$.

Conquer by recursively computing minimum and maximum of the two subarrays $A[p \ldots r]$ and $A[r+1 \ldots q]$.

Combine by computing the overall minimum as the min of the two recursively computed minima, similar for the overall maximum.
Divide-and-Conquer Min-Max

As we are dealing with subproblems, we state each subproblem as computing minimum and maximum of a subarray $A[p..q]$. Initially, $p = 1$ and $q = A.length$, but these values change as we recurse through subproblems.

To compute minimum and maximum of $A[p..q]$:

Divide by splitting into two subarrays $A[p..r]$ and $A[r+1..q]$, where r is the halfway point of $A[p..q]$.

Conquer by recursively computing minimum and maximum of the two subarrays $A[p..r]$ and $A[r+1..q]$.

Combine by computing the overall minimum as the min of the two recursively computed minima, similar for the overall maximum.
Divide-and-Conquer Min-Max

As we are dealing with subproblems, we state each subproblem as computing minimum and maximum of a subarray $A[p..q]$. Initially, $p = 1$ and $q = A.length$, but these values change as we recurse through subproblems.

To compute minimum and maximum of $A[p..q]$:

Divide by splitting into two subarrays $A[p..r]$ and $A[r+1..q]$, where r is the halfway point of $A[p..q]$.

Conquer by recursively computing minimum and maximum of the two subarrays $A[p..r]$ and $A[r+1..q]$.

Combine by computing the overall minimum as the min of the two recursively computed minima, similar for the overall maximum.
Divide-and-Conquer Min-Max

As we are dealing with subproblems, we state each subproblem as computing minimum and maximum of a subarray $A[p..q]$. Initially, $p = 1$ and $q = A.length$, but these values change as we recurse through subproblems.

To compute minimum and maximum of $A[p..q]$:

Divide by splitting into two subarrays $A[p..r]$ and $A[r+1..q]$, where r is the halfway point of $A[p..q]$.

Conquer by recursively computing minimum and maximum of the two subarrays $A[p..r]$ and $A[r+1..q]$.

Combine by computing the overall minimum as the min of the two recursively computed minima, similar for the overall maximum.
Divide-and-Conquer Min-Max Algorithm
Initially called with $\text{MIN-MAX}(A, 1, A.\text{length})$.

$\text{MIN-MAX}(A, p, q)$
1. if $p = q$
2. return $(A[p], A[q])$
3. if $p = q - 1$
5. return $(A[p], A[q])$
6. else return $(A[q], A[p])$
7. $r = \lfloor (p+q)/2 \rfloor$
8. $(\text{min1}, \text{max1}) = \text{MIN-MAX}(A, p, r)$
9. $(\text{min2}, \text{max2}) = \text{MIN-MAX}(A, r+1, q)$
10. return $(\min(\text{min1}, \text{min2}), \max(\text{max1}, \text{max2}))$

Note
- In line 7, r computes the halfway point of $A[p..q]$.
- $n = q - p + 1$ is the number of elements from which we compute the min and max.
Solving the Min-Max Recurrence

Let $T(n)$ be the number of comparisons made by $\text{Min-Max}(A, p, q)$, where $n = q - p + 1$ is the number of elements from which we compute the min and max.

Then $T(1) = 0$, $T(2) = 1$, and for $N > 2$:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 2.$$

Claim

$$T(n) = \frac{3}{2} n - 2 \quad \text{for} \quad n = 2^k \geq 2, \text{ i.e., powers of 2.}$$

Proof.

The proof is by induction on k (using $n = 2^k$).

Base case: true for $k=1$, as $T(2^1) = 1 = \frac{3}{2} \cdot 2^1 - 2$.

Induction step: assuming $T(2^k) = \frac{3}{2} 2^k - 2$, we get

$$T(2^{k+1}) = 2T(2^k) + 2 = 2 \left(\frac{3}{2} 2^k - 2 \right) + 2 = \frac{3}{2} 2^{k+1} - 2 \quad \square$$
Solving the Min-Max Recurrence

Let $T(n)$ be the number of comparisons made by $\text{MIN-MAX}(A, p, q)$, where $n = q - p + 1$ is the number of elements from which we compute the min and max.

Then $T(1) = 0$, $T(2) = 1$, and for $N > 2$:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 2.$$

Claim

$$T(n) = \frac{3}{2} n - 2 \quad \text{for} \quad n = 2^k \geq 2, \text{i.e., powers of 2}.$$

Proof.

The proof is by induction on k (using $n = 2^k$).

Base case: true for $k=1$, as $T(2^1) = 1 = \frac{3}{2} \cdot 2^1 - 2$.

Induction step: assuming $T(2^k) = \frac{3}{2} 2^k - 2$, we get

$$T(2^{k+1}) = 2T(2^k) + 2 = 2 \left(\frac{3}{2} 2^k - 2 \right) + 2 = \frac{3}{2} 2^{k+1} - 2 \quad \square$$
Solving the Min-Max Recurrence (cont’d)

Some remarks:

1. If we replace line 7 of the algorithm by \(r = p + 1 \), then the resulting runtime \(T'(n) \) satisfies \(T'(n) = \lceil \frac{3n}{2} \rceil - 2 \) for all \(n > 0 \).
2. For example, \(T'(6) = 7 \) whereas \(T(6) = 8 \).
3. It can be shown that at least \(\lceil \frac{3n}{2} \rceil - 2 \) comparisons are necessary in the worst case to find the maximum and minimum of \(n \) numbers for any comparison-based algorithm: this is thus a lower bound on the problem.
4. Hence this (last) algorithm is provably optimal.
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$?

2. $5n + 111 = O(n^2)$? YES

3. $5n + 111 = \Omega(n)$? YES

4. $5n + 111 = \Omega(n^2)$? NO

5. $5n + 111 = \Theta(n)$? YES

6. $5n + 111 = \Theta(n^2)$? NO

7. $2n = O(3n)$? YES

8. $2n = \Omega(3n)$? NO

9. $120n^2 + \sqrt{n} + 99n = O(n^2)$? YES

10. $120n^2 + \sqrt{n} + 99n = \Theta(n^2)$? YES

11. $\sin(n) = O(1)$? YES
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$?

4. $2n = O(3n)$? YES
5. $2n = \Omega(3n)$? NO

6. $120n^2 + \sqrt{n} + 99n = O(n^2)$? YES
7. $120n^2 + \sqrt{n} + 99n = \Theta(n^2)$? YES

8. $\sin(n) = O(1)$? YES
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$?
Big-Oh, Omega, Theta by examples

1. \(5n + 111 = O(n) \) ? YES
2. \(5n + 111 = O(n^2) \) ? YES
3. \(5n + 111 = \Omega(n) \) ? YES
4. \(5n + 111 = \Omega(n^2) \) ? NO
5. \(5n + 111 = \Theta(n) \) ?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$? NO
5. $5n + 111 = \Theta(n)$? YES
6. $5n + 111 = \Theta(n^2)$?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$? NO
5. $5n + 111 = \Theta(n)$? YES
6. $5n + 111 = \Theta(n^2)$? NO
7. $2^n = O(3^n)$?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$? NO
5. $5n + 111 = \Theta(n)$? YES
6. $5n + 111 = \Theta(n^2)$? NO
7. $2^n = O(3^n)$? YES
8. $2^n = \Omega(3^n)$?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$? NO
5. $5n + 111 = \Theta(n)$? YES
6. $5n + 111 = \Theta(n^2)$? NO
7. $2^n = O(3^n)$? YES
8. $2^n = \Omega(3^n)$? NO
9. $120n^2 + \sqrt{n} + 99n = O(n^2)$?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$? NO
5. $5n + 111 = \Theta(n)$? YES
6. $5n + 111 = \Theta(n^2)$? NO
7. $2^n = O(3^n)$? YES
8. $2^n = \Omega(3^n)$? NO
9. $120n^2 + \sqrt{n} + 99n = O(n^2)$? YES
10. $120n^2 + \sqrt{n} + 99n = \Theta(n^2)$?
Big-Oh, Omega, Theta by examples

1. $5n + 111 = O(n)$? YES
2. $5n + 111 = O(n^2)$? YES
3. $5n + 111 = \Omega(n)$? YES
4. $5n + 111 = \Omega(n^2)$? NO
5. $5n + 111 = \Theta(n)$? YES
6. $5n + 111 = \Theta(n^2)$? NO

7. $2^n = O(3^n)$? YES
8. $2^n = \Omega(3^n)$? NO

9. $120n^2 + \sqrt{n} + 99n = O(n^2)$? YES
10. $120n^2 + \sqrt{n} + 99n = \Theta(n^2)$? YES
11. $\sin(n) = O(1)$?
Big-Oh, Omega, Theta by examples

1. \(5n + 111 = O(n)\) ? YES
2. \(5n + 111 = O(n^2)\) ? YES
3. \(5n + 111 = \Omega(n)\) ? YES
4. \(5n + 111 = \Omega(n^2)\) ? NO
5. \(5n + 111 = \Theta(n)\) ? YES
6. \(5n + 111 = \Theta(n^2)\) ? NO
7. \(2^n = O(3^n)\) ? YES
8. \(2^n = \Omega(3^n)\) ? NO
9. \(120n^2 + \sqrt{n} + 99n = O(n^2)\) ? YES
10. \(120n^2 + \sqrt{n} + 99n = \Theta(n^2)\) ? YES
11. \(\sin(n) = O(1)\) ? YES
Unfolding the recursion for Min-Max

We have

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
1 & \text{if } n = 2 \\
T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rfloor) + 2 & \text{else}
\end{cases}
\]

1. \(T(1) = 0\)

2. \(T(2) = 1\)

3. \(T(3) = T(2) + T(1) + 2 = 1 + 0 + 2 = 3\)

4. \(T(4) = T(2) + T(2) + 2 = 1 + 1 + 2 = 4\)

5. \(T(5) = T(3) + T(2) + 2 = 3 + 1 + 2 = 6\)

6. \(T(6) = T(3) + T(3) + 2 = 3 + 3 + 2 = 8\)

7. \(T(7) = T(4) + T(3) + 2 = 4 + 3 + 2 = 9\)

8. \(T(8) = T(4) + T(4) + 2 = 4 + 4 + 2 = 10\)

9. \(T(9) = T(5) + T(4) + 2 = 6 + 4 + 2 = 12\)

10. \(T(10) = T(5) + T(5) + 2 = 6 + 6 + 2 = 14\).

We count 4 steps +1 and 5 steps +2 — we guess \(T(n) \approx \frac{3}{2} n\).
Finding the best min-max algorithm

1. As you can see in the section on the min-max problem, for some input sizes we can validate the guess $T(n) \approx \frac{3}{2} n$.

2. One can now try to find a precise general formula for $T(n)$.

3. However we see that we have $T(6) = 8$, while we can handle this case with 7 comparisons. So perhaps we can find a better algorithm?

4. And that is the case:

 1. If n is even, find the min-max for the first two elements using 1 comparison; if n is odd, find the min-max for the first element using 0 comparisons.

 2. Now iteratively find the min-max of the next two elements using 1 comparison, and compute the new current min-max using 2 further comparisons. And so on

This yields an algorithm using precisely $\lceil \frac{3}{2} n \rceil - 2$ comparisons. And this is precisely optimal for all n.

We learn: Here divide-and-conquer provided a good stepping stone to find a really good algorithm.