RAGS: Region-aided Geometric Snake
—— A new approach to snake segmentation

Xiaohua Xie
Supervised by Dr. Majid Mirmehdi

SRCFE, April 2003
Computer Science Department, University of Bristol

Snake, a powerful active contouring method

- Snake:
 - Deformable curves within image domain to recover object shapes.

- Implementations:
 - Shape description
 - Object localisation
 - Motion tracking
 - Segmentation (e.g. colour/texture)

- Two general types: parametric and geometric snakes
- One example: a geometric snake

Parametric snake models

- Parametric snake
 - Introduced by Kass et al. (1987);
 - Represented explicitly as parameterized curves;
 - Snake evolves to minimize the internal and external forces (Let $C(q)$ be a parameterized plane curve);

 $$\frac{\partial C}{\partial t} = \lambda \nabla I(C(q)) - \beta \frac{\partial}{\partial u} \left(\frac{\partial C}{\partial u} \right)$$

 - Initialisation problem;
 - Concavity convergence problem;
 - Topological problems.
 - Non-intrinsic, parameterisation dependent;
 - Hard to detect multiple objects simultaneously.

Geometric snake models

- Geometric snake
 - Introduced by Caselles et al. and Malladi et al. (1993);
 - Based on the theory of curve evolution
 - Numerically implemented via level set methods;
 - Snake evolves to minimize the weighted length in a Riemannian space with a metric derived from the image content;

 - Brief introduction to curve evolution and level set methods ...

Curve evolution

- Curvature flow
 - The curvature measures how fast each point moves along its normal direction;
 - A simple closed curve will evolve toward a circular shape and disappear;
 - It is indeed smoothing.

- Constant flow
 - Each point moves at a constant speed along its normal direction;
 - It can cause a smooth curve to a singular one.

Level set method

- A computational technique for tracking a propagating interface over time.

 - The snake is embedded as a zero level set of a 3D surface.
Standard geometric snake

- Geometric snake formulation:
 \[C = \|\nabla \phi \| \kappa + \epsilon \| \nabla \phi \| \cdot \n\]
 - \(\epsilon \) represents a decreasing function such that \(\epsilon(x) \to 0 \) as \(x \to \infty \);
 - \(\kappa \) is curvature, \(N \) is the unit inward normal.
- Level set representation:
 \[\phi = \| \nabla \phi \| \kappa + \epsilon \| \nabla \phi \| \cdot \n \]
 - \(\phi \) is a level set function, which embeds the snake contours.
- Advantages:
 - Much larger capture area;
 - Good convergence quality;
 - Totally intrinsic, automatically handle topological changes.

Standard geometric snake problems

- Weak-edge leakage problem
 - The weighting function is based on the gradient;
 - When the object boundary is indistinct or has gaps, the snake tends to leak through the boundary;
 - The second term of the geometric snake formulation is not strong enough to prevent from leaking through weak-edges.
- Lack of global information
 - Sensitive to local minima;
 - Only use local information.

Improvements in the literature world

- Area-length minimisation snake
 - Combine the weighted length functional with a weighted area functional.
 \[C = \|\nabla \phi \| \kappa + \epsilon \| \nabla \phi \| \cdot \n\]

- GVF and Generalised GVF (GGVF) snakes
 - A new external force field \(V(u, v) \) (GVF) is used to attract the snake;
 - \(V = \int \| \nabla \phi \| \kappa + \epsilon \| \nabla \phi \| \cdot \n \)
 - GGVF can be fit into geometric framework;
 - Better convergence quality, larger capture area;
 - Preserve perceptual edge property of snake.

Improvements in the literature world (cont.)

- Region-based snakes
 - \(C = \alpha N \cdot (F_{\text{ext}} + W_{\text{reg}}) \)
 - \(R \) is a region function, \(W_{\text{reg}} \) is a positive weighting parameter;
 - The region force acts as signed pressure force, which replaces the constant force in standard geometric snake;
 - A refinement of region segmentation;
 - Can be powerful when dealing with textured images.

Still problems

- Area-length minimisation snake
 - The weighting function is still based on the gradient, i.e. still suffer from leakage problem.
- GVF/GGVF snakes
 - Topological problems, although GGVF can be fit into geometric framework;
 - Difficult to neighbouring weak/strong edges.
- Region-based snakes
 - Needs prior-knowledge;
 - Purely based on segmentation, have problem with object segmentation.

RAGS, the proposed method

- Goals
 - Make the geometric snake much more tolerant towards weak edges and image noise.
- The proposed method
 - Integrate the gradient flow forces with diffused region constrains;
 - Region vector flow is obtained through the diffusion of segmentation map;
 - The gradient flow forces supply local object boundary information;
 - Region force is based on the global features; Segmentation independent.
RAGS, region force diffusion

- Segmentation gives the region map \(R \);
- \(\forall z \) gives region constraints in the vicinity of the region boundaries;
- Region vector flow is derived from diffusing the region force (equilibrium state of following equation).

\[
\begin{align*}
\rho(.): & \quad p(.): \quad q(.) \\
\n\rho(.): & \quad q(.): \quad p(.) \\
\rho(.): & \quad q(.) \\

RAGS, snake formulation

- The geometric snake can be represented as:
- \(C = [(f_1, f_2)] \)
- The original internal and external forces:
- \(f_i = g_i |f_i| \)
- Add the diffused region force to the external term:
- \(f_i = g_i |f_i| + e \cdot \langle \nabla f_i, \nabla \psi_i \rangle \)
- RAGS formulation:
- \(C = [(f_1, f_2)] \)
- Level set representation:
- \(\delta = \langle \nabla f_i, \nabla \psi_i \rangle \)

RAGS on vector-valued images

- Let \(\rho(.) \) be edge indicator, then the stopping function \(g(.) \) can be any decreasing function of \(f(.) \): \(g(.) = \frac{1}{1 + f(.)} \).
- Let \(\partial u_i (u_i) \) be a m-band image. The eigenvalues are given by:

\[
\lambda_j = \frac{u_i + u_j}{2} \quad \text{and} \quad \mu_j = \frac{u_i - u_j}{2}
\]

- The strength of the edge is given by the difference between the extremums;

\[
f_i = \lambda_j - \lambda_i, \quad g_i = \frac{g_i + f_i}{2}
\]

- Then colour RAGS is given by:

\[
C = g_i \langle |f_i| \rangle \quad \nabla = \langle \nabla \psi_i \rangle
\]

Implementations

- Testing on weak-edges
- Testing on noisy images
- Different region-forces
- More RAGS examples

Preventing weak-edge leakage

- The test object is a circular shape with a small blurred area on the upper right boundary.

Neighbouring weak/strong edges

- Standard geometric snake failed because of weak-edge;
- GGVF snake failed because of presence of strong edge;
- RAGS correctly converged.

From left: geodesic snake, GGVF snake, and RAGS.
Testing on noisy images

- Row 1: original image with added noise (0%-60%); row 2: geodesic snake result; row 3: GGVF snake result; row 4: RAGS result.

Testing on noisy images (cont.)

- MRE comparison for the Harmonic Shapes in previous figure

<table>
<thead>
<tr>
<th>% noise</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand. Geom. Error</td>
<td>2.00</td>
<td>2.23</td>
<td>5.00</td>
<td>9.00</td>
<td>16.16</td>
<td>15.81</td>
<td>28.17</td>
</tr>
<tr>
<td>GGVF Geom. Error</td>
<td>2.00</td>
<td>2.24</td>
<td>7.07</td>
<td>10.00</td>
<td>11.31</td>
<td>21.16</td>
<td>20.10</td>
</tr>
<tr>
<td>RAGS Error</td>
<td>2.00</td>
<td>2.00</td>
<td>4.00</td>
<td>4.00</td>
<td>5.00</td>
<td>5.00</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Different region forces

- RAGS is segmentation independent;
- Mean shift algorithm is implemented to generate region map;
- RAGS works well both on under-segmentation and on over-segmentation.

RAGS on gray level images

- Rags in comparison to the standard geometric and GGVF snakes on gray level image.

Brain MRI (corpus callosum) image – from left to right: standard geometric snake, GGVF snake, and RAGS.

RAGS on colour images

- Convergence quality comparison;
- Weak-edge and GGVF problems demonstration.

More RAGS examples
Summary

- A novel method, RAGS, was proposed;
- It integrates the gradient flow with region vector flow;
- The theory is stand-alone;
- Better performance towards weak-edges and noise in images;
- Applicable in a variety of fields:
 - Shape modeling, recovery;
 - Object localisation;
 - Medical applications;
- Shortcomings:
 - Not suitable for highly textured images;
 - Dependent on reasonable segmentation.

Publications

- RAGS Website: http://www.cs.bris.ac.uk/~xie/rags.html
- Xianghua Xie and Majid Mirmehdi, Geodesic Colour Active Contour Resistant to Weak Edges and Noise, submitted to BMVC2003, April 2003;

Questions

- ? …