The Stable Revivals Model in CSP-Prover

D G Samuel (Swansea), Y Isobe (AIST, Japan), M Roggenbach (Swansea)

AVoCS 2008
A trend: Theorem proving for process algebra
Theorem proving for process algebra

CSP
- CSP in HOL (Camilleri '90)
- HOL-CSP (Tej/Wolf '97)
- CSP-T (Dutertre/Schneider '01)
- CSP-F (Wei/Heather '05)
- CSP-Prover ('05,'06,'08a,'08b)
- CSP-N (Kammueller '07)

μCRL/ACP
- van de Pol ('01)
- Badban et al ('05)

CCS
- Nesi ('92)

π-calculus
- Röckl/Hirschkoff ('03)
- Bengtson/Parrow ('07)
Outline of the talk

- The stable revivals model \mathcal{R}
- CSP-Prover
- Implementation of the model \mathcal{R} in CSP-Prover
- Mechanical validation of algebraic laws
Outline of the talk

- The stable revivals model \mathcal{R}
- CSP-Prover
 - Implementation of the model \mathcal{R} in CSP-Prover
 - Mechanical validation of algebraic laws
Outline of the talk

- The stable revivals model \mathcal{R}
- CSP-Prover
- Implementation of the model \mathcal{R} in CSP-Prover
- Mechanical validation of algebraic laws
Outline of the talk

- The stable revivals model \mathcal{R}
- CSP-Prover
- Implementation of the model \mathcal{R} in CSP-Prover
- Mechanical validation of algebraic laws
The stable revivals model
The stable revivals model

- The stable revivals model \(\mathcal{R} \) (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process \(Q \) is responsive to process \(P \) if process \(Q \) will not cause process \(P \) to deadlock by not responding when expected by \(P \).
- A network is stuck if network of process does not terminate leaving one partner hanging.
- The model \(T \), the model \(F \), and the model \(R \) are successively more refined.
- There does not exist any model that refines the model \(R \) and is more abstract than the stable acceptance model \(A \) and the refusal testing model \(RT \).
The stable revivals model

- The stable revivals model \mathcal{R} (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process Q is responsive to process P if process Q will not cause process P to deadlock by not responding when expected by P.
- A network is stuck if network of process does not terminate leaving one partner hanging.
- The model \mathcal{T}, the model \mathcal{F}, and the model \mathcal{R} are successively more refined.
- There does not exist any model that refines the model \mathcal{R} and is more abstract than the stable acceptance model \mathcal{A} and the refusal testing model \mathcal{RT}.
The stable revivals model

- The stable revivals model R (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process Q is *responsive* to process P if process Q will not cause process P to deadlock by not responding when expected by P.
- A network is *stuck* if network of process does not terminate leaving one partner hanging.
- The model T, the model F, and the model R are successively more refined.
- There does not exist any model that refines the model R and is more abstract than the stable acceptance model \mathcal{A} and the refusal testing model RT.

Theorem Proving for Process Algebra

The stable revivals model

Semantics of the stable revivals model
The Domain of the stable revivals model
CSP Prover
Syntax of CSP-Prover
Implementing the stable revivals model
Steps in Implementing the model
Type correctness
Recursive processes
Validation of algebraic laws
Conclusion
The stable revivals model

- The stable revivals model \(\mathcal{R} \) (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process \(Q \) is **responsive** to process \(P \) if process \(Q \) will not cause process \(P \) to deadlock by not responding when expected by \(P \).
- A network is **stuck** if network of process does not terminate leaving one partner hanging.
- The model \(\mathcal{T} \), the model \(\mathcal{F} \), and the model \(\mathcal{R} \) are successively more refined.
- There does not exist any model that refines the model \(\mathcal{R} \) and is more abstract than the stable acceptance model \(\mathcal{A} \) and the refusal testing model \(\mathcal{RT} \).
The stable revivals model

- The stable revivals model R (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process Q is **responsive** to process P if process Q will not cause process P to deadlock by not responding when expected by P.
- A network is **stuck** if network of process does not terminate leaving one partner hanging.
- The model T, the model F, and the model R are successively more refined.
- There does not exist any model that refines the model R and is more abstract than the stable acceptance model A and the refusal testing model RT.
The stable revivals model

- The stable revivals model \(\mathcal{R} \) (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process \(Q \) is **responsive** to process \(P \) if process \(Q \) will not cause process \(P \) to deadlock by not responding when expected by \(P \).
- A network is **stuck** if network of process does not terminate leaving one partner hanging.
- The model \(\mathcal{T} \), the model \(\mathcal{F} \), and the model \(\mathcal{R} \) are successively more refined.
- There does not exist any model that refines the model \(\mathcal{R} \) and is more abstract than the stable acceptance model \(\mathcal{A} \) and the refusal testing model \(\mathcal{RT} \).
The stable revivals model

- The stable revivals model \mathcal{R} (Roscoe 2005, revised 2007) is a new semantic model of CSP.
- It is a finite observation model.
- Developed to reason about Responsiveness and Stuck-freeness.
- A process Q is responsive to process P if process Q will not cause process P to deadlock by not responding when expected by P.
- A network is stuck if network of process does not terminate leaving one partner hanging.
- The model \mathcal{T}, the model \mathcal{F}, and the model \mathcal{R} are successively more refined.
- There does not exist any model that refines the model \mathcal{R} and is more abstract than the stable acceptance model \mathcal{A} and the refusal testing model \mathcal{RT}.
Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process P in terms of

$$(\text{traces}(P), \text{deadlock}(P), \text{revivals}(P))$$

Given an alphabet Σ:

- $\sigma \in \text{traces}(P) \subseteq \Sigma^*$
 P can perform the finite sequence σ.
- $\sigma \in \text{deadlock}(P) \subseteq \Sigma^*$
 P can deadlock after σ.
- $(\sigma, X, a) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma)$
 P can execute σ, stably refuse X, and then perform a.

Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process P in terms of

$$(\text{traces}(P), \text{deadlock}(P), \text{revivals}(P))$$

Given an alphabet Σ:

- $\sigma \in \text{traces}(P) \subseteq \Sigma^*$
 P can perform the finite sequence σ.
- $\sigma \in \text{deadlock}(P) \subseteq \Sigma^*$
 P can deadlock after σ.
- $(\sigma, X, a) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma)$
 P can execute σ, stably refuse X, and then perform a.

Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process P in terms of

$$(\text{traces}(P), \text{deadlock}(P), \text{revivals}(P))$$

Given an alphabet Σ:

- $\sigma \in \text{traces}(P) \subseteq \Sigma^* \forall$
 P can perform the finite sequence σ.
- $\sigma \in \text{deadlock}(P) \subseteq \Sigma^*$
 P can deadlock after σ.
- $(\sigma, X, a) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma)$
 P can execute σ, stably refuse X, and then perform a.
Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process P in terms of

$$(\text{traces}(P), \text{deadlock}(P), \text{revivals}(P))$$

Given an alphabet Σ:

- $\sigma \in \text{traces}(P) \subseteq \Sigma^*\sqrt{\text{v}}$
 - P can perform the finite sequence σ.

- $\sigma \in \text{deadlock}(P) \subseteq \Sigma^*$
 - P can deadlock after σ.

- $(\sigma, X, a) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma)$
 - P can execute σ, stably refuse X, and then perform a.
Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process \(P \) in terms of

\[
\text{traces}(P), \text{deadlock}(P), \text{revivals}(P)
\]

Given an alphabet \(\Sigma \):

- \(\sigma \in \text{traces}(P) \subseteq \Sigma^* \sqrt{\text{a}} \)

 \(P \) can perform the finite sequence \(\sigma \).

- \(\sigma \in \text{deadlock}(P) \subseteq \Sigma^* \)

 \(P \) can deadlock after \(\sigma \).

- \((\sigma, X, a) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma) \)

 \(P \) can execute \(\sigma \), stably refuse \(X \), and then perform \(a \).
Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process P in terms of

$$(\text{traces}(P), \text{deadlock}(P), \text{revivals}(P))$$

Given an alphabet Σ:

- $\sigma \in \text{traces}(P) \subseteq \Sigma^* \sqrt{}$
 P can perform the finite sequence σ.

- $\sigma \in \text{deadlock}(P) \subseteq \Sigma^*$
 P can deadlock after σ.

- $($σ, X, a$) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma)$
 P can execute σ, stably refuse X, and then perform a.
Semantics of the stable revivals model

Stable revivals semantics assigns meaning for each process P in terms of

$$(\text{traces}(P), \text{deadlock}(P), \text{revivals}(P))$$

Given an alphabet Σ:

- $\sigma \in \text{traces}(P) \subseteq \Sigma^* \sqrt{\Box}$

 P can perform the finite sequence σ.

- $\sigma \in \text{deadlock}(P) \subseteq \Sigma^*$

 P can deadlock after σ.

- $(\sigma, X, a) \in \text{revivals}(P) \subseteq (\Sigma^* \times \mathcal{P}(\Sigma) \times \Sigma)$

 P can execute σ, stably refuse X, and then perform a.
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T1\): \(T\) is nonempty and prefix-closed.
 - \(D1\): \(D \subseteq T\).
 - \(R1\): \((s, X, a) \in R \Rightarrow s \wedge \langle a \rangle \in T\).
 - \(R2\): \((s, X, a) \in R \wedge Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - \(R3\): \((s, X, a) \in R \wedge b \in \Sigma \Rightarrow ((s, X, b) \in R \vee (s, X \cup \{b\}, a) \in R)\).
 - \(RRS\): \((s, X, a) \in R \Rightarrow a \notin X\).
 - \(R3'\): \((s, X, a) \in R \wedge Y \subseteq \Sigma \wedge (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).
 - \(\text{dom}R^\text{fin}_\Sigma = \{ (T, D, R) \mid T1, D1, R1, R2, R3, RRS \}\), \(\Sigma\) is finite.
 - \(\text{dom}R^\text{arb}_\Sigma = \{ (T, D, R) \mid T1, D1, R1, R2, R3, RRS \}\), \(\Sigma\) is arbitrary.
 - \(\text{dom}R^\text{m}_\Sigma = \{ (T, D, R) \mid T1, D1, R1, R2, R3', RRS \}\), \(\Sigma\) is arbitrary.
 - As \(R3'\) implies \(R3\): \(\text{dom}R^\text{m}_\Sigma \subseteq \text{dom}R^\text{m}_\Sigma\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T1\): \(T\) is nonempty and prefix-closed.
 - \(D1\): \(D \subseteq T\).
 - \(R1\): \((s, X, a) \in R \Rightarrow s \cap \langle a \rangle \in T\).
 - \(R2\): \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - \(R3\): \((s, X, a) \in R \land b \in \Sigma \)
 \(\Rightarrow (s, X, b) \notin R\).
 - \(RRS\): \((s, X, a) \in R \Rightarrow a \notin X\).
 - \(R3':\) \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \)
 \(\Rightarrow (s, X \cup Y, a) \in R\).
 - \(\text{domR}_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\},\)
 \(\Sigma\) is finite.
 - \(\text{domR}_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\},\)
 \(\Sigma\) is arbitrary.
 - \(\text{domR}_{\Sigma}^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\},\)
 \(\Sigma\) is arbitrary.
 - As \(R3'\) implies \(R3\): \(\text{domR}_{\Sigma}^{'} \subseteq \text{domR}_{\Sigma}\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T1\): \(T\) is nonempty and prefix-closed.
 - \(D1\): \(D \subseteq T\).
 - \(R1\): \((s, X, a) \in R \Rightarrow s \triangleleft (a) \in T\).
 - \(R2\): \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - \(R3\): \((s, X, a) \in R \land b \in \Sigma\)
 \(\Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - \(RRS\): \((s, X, a) \in R \Rightarrow a \notin X\).

- \(R3'\): \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R)\)
 \(\Rightarrow (s, X \cup Y, a) \in R\).

- \(domR^\text{fin}_\Sigma = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}\),
 \(\Sigma\) is finite.

- \(domR^\text{arb}_\Sigma = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}\),
 \(\Sigma\) is arbitrary.

- \(domR^m_\Sigma = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}\),
 \(\Sigma\) is arbitrary.

- As \(R3'\) implies \(R3\): \(domR'^\prime_\Sigma \subseteq domR_\Sigma\).
Domain of the stable revivals model

- Healthiness conditions on (T, D, R):
 - $T1: T$ is nonempty and prefix-closed.
 - $D1: D \subseteq T$.
 - $R1: (s, X, a) \in R \Rightarrow s \setminus \langle a \rangle \in T$.
 - $R2: (s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R$.
 - $R3: (s, X, a) \in R \land b \in \Sigma$
 \[\Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R). \]
 - $RRS: (s, X, a) \in R \Rightarrow a \notin X$.

- $R3': (s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R)$
 \[\Rightarrow (s, X \cup Y, a) \in R. \]

- $\text{dom}_\Sigma^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}$, Σ is finite.

- $\text{dom}_\Sigma^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}$, Σ is arbitrary.

- $\text{dom}_\Sigma^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}$, Σ is arbitrary.

- As $R3'$ implies $R3$: $\text{dom}_\Sigma'^\prime \subseteq \text{dom}_\Sigma$.
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T1\) : \(T\) is nonempty and prefix-closed.
 - \(D1\) : \(D \subseteq T\).
 - \(R1\) : \((s, X, a) \in R \implies s \land \langle a \rangle \in T\).
 - \(R2\) : \((s, X, a) \in R \land Y \subseteq X \implies (s, Y, a) \in R\).
 - \(R3\) : \((s, X, a) \in R \land b \in \Sigma \\
 \implies ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - \(RRS\) : \((s, X, a) \in R \implies a \notin X\).
 - \(R3'\) : \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y.(s, X, b) \notin R) \\
 \implies (s, X \cup Y, a) \in R\).

- \(\text{domR}_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}\), \(\Sigma\) is finite.
- \(\text{domR}_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}\), \(\Sigma\) is arbitrary.
- \(\text{domR}_{\Sigma}^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}\), \(\Sigma\) is arbitrary.
- As \(R3'\) implies \(R3\): \(\text{domR}_{\Sigma}^{'} \subseteq \text{domR}_{\Sigma}\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - **T1**: \(T\) is nonempty and prefix-closed.
 - **D1**: \(D \subseteq T\).
 - **R1**: \((s, X, a) \in R \Rightarrow s \cap \langle a \rangle \in T\).
 - **R2**: \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - **R3**: \((s, X, a) \in R \land b \in \Sigma \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - **RRS**: \((s, X, a) \in R \Rightarrow a \notin X\).

- **R3'**: \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).

- \(\text{dom}R_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is finite.

- \(\text{dom}R_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is arbitrary.

- \(\text{dom}R_{\Sigma}^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}, \Sigma\) is arbitrary.

- As \(R3'\) implies \(R3\): \(\text{dom}R_{\Sigma}^{'} \subseteq \text{dom}R_{\Sigma}\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T1\): \(T\) is nonempty and prefix-closed.
 - \(D1\): \(D \subseteq T\).
 - \(R1\): \((s, X, a) \in R \Rightarrow s \cap \langle a \rangle \in T\).
 - \(R2\): \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - \(R3\): \((s, X, a) \in R \land b \in \Sigma \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - \(RRS\): \((s, X, a) \in R \Rightarrow a \notin X\).

- \(R3'\): \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).

- \(\text{dom}\text{R}_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is finite.

- \(\text{dom}\text{R}_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is arbitrary.

- \(\text{dom}\text{R}_{\Sigma}^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}, \Sigma\) is arbitrary.

- As \(R3'\) implies \(R3\): \(\text{dom}\text{R}_{\Sigma}^{'} \subseteq \text{dom}\text{R}_{\Sigma}\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - **T1**: \(T\) is nonempty and prefix-closed.
 - **D1**: \(D \subseteq T\).
 - **R1**: \((s, X, a) \in R \Rightarrow s \cap \langle a \rangle \in T\).
 - **R2**: \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - **R3**: \((s, X, a) \in R \land b \in \Sigma \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - **RRS**: \((s, X, a) \in R \Rightarrow a \notin X\).

- **R3'**: \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).

- \(\text{dom}R_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is finite.

- \(\text{dom}R_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is arbitrary.

- \(\text{dom}R_{\Sigma}^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}, \Sigma\) is arbitrary.

- As **R3'** implies **R3**: \(\text{dom}R_{\Sigma}^{'} \subseteq \text{dom}R_{\Sigma}\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - **T1**: \(T\) is nonempty and prefix-closed.
 - **D1**: \(D \subseteq T\).
 - **R1**: \((s, X, a) \in R \Rightarrow s \cap \langle a \rangle \in T\).
 - **R2**: \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - **R3**: \((s, X, a) \in R \land b \in \Sigma \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - **RRS**: \((s, X, a) \in R \Rightarrow a \notin X\).
 - **R3′**: \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).

- **\(\text{domR}_\Sigma^{\text{fin}}\)**: \(\{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}\), \(\Sigma\) is finite.

- **\(\text{domR}_\Sigma^{\text{arb}}\)**: \(\{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}\), \(\Sigma\) is arbitrary.

- **\(\text{domR}_\Sigma^m\)**: \(\{(T, D, R) \mid T1, D1, R1, R2, R3′, RRS\}\), \(\Sigma\) is arbitrary.

- As \(R3′\) implies \(R3\): \(\text{domR}_\Sigma^{r} \subseteq \text{domR}_\Sigma\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T_1\): \(T\) is nonempty and prefix-closed.
 - \(D_1\): \(D \subseteq T\).
 - \(R_1\): \((s, X, a) \in R \Rightarrow s \preceq \langle a \rangle \in T\).
 - \(R_2\): \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - \(R_3\): \((s, X, a) \in R \land b \in \Sigma \\
 \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - \(RRS\): \((s, X, a) \in R \Rightarrow a \notin X\).

- \(R3'\): \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \\
 \Rightarrow (s, X \cup Y, a) \in R\).

- \(\text{domR}_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T_1, D_1, R_1, R_2, R_3, RRS\}, \Sigma \) is finite.

- \(\text{domR}_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T_1, D_1, R_1, R_2, R_3, RRS\}, \Sigma \) is arbitrary.

- \(\text{domR}_{\Sigma}^{m} = \{(T, D, R) \mid T_1, D_1, R_1, R_2, R_3', RRS\}, \Sigma \) is arbitrary.

- As \(R3'\) implies \(R3\): \(\text{domR}_{\Sigma}' \subseteq \text{domR}_{\Sigma}\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - **T1**: \(T\) is nonempty and prefix-closed.
 - **D1**: \(D \subseteq T\).
 - **R1**: \((s, X, a) \in R \Rightarrow s \smallsetminus \langle a \rangle \in T\).
 - **R2**: \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - **R3**: \((s, X, a) \in R \land b \in \Sigma \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - **RRS**: \((s, X, a) \in R \Rightarrow a \notin X\).

- **R3'**: \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).

- \(\text{dom}R^\text{fin}_\Sigma = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma \text{ is finite.}\)

- \(\text{dom}R^\text{arb}_\Sigma = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma \text{ is arbitrary.}\)

- \(\text{dom}R^m_\Sigma = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}, \Sigma \text{ is arbitrary.}\)

- As **R3'** implies **R3**: \(\text{dom}R'_\Sigma \subseteq \text{dom}R_\Sigma\).
Domain of the stable revivals model

- Healthiness conditions on \((T, D, R)\):
 - \(T1\) : \(T\) is nonempty and prefix-closed.
 - \(D1\) : \(D \subseteq T\).
 - \(R1\) : \((s, X, a) \in R \Rightarrow s \sqcup \langle a \rangle \in T\).
 - \(R2\) : \((s, X, a) \in R \land Y \subseteq X \Rightarrow (s, Y, a) \in R\).
 - \(R3\) : \((s, X, a) \in R \land b \in \Sigma \Rightarrow ((s, X, b) \in R \lor (s, X \cup \{b\}, a) \in R)\).
 - \(RRS\) : \((s, X, a) \in R \Rightarrow a \notin X\).

- \(R3'\) : \((s, X, a) \in R \land Y \subseteq \Sigma \land (\forall b \in Y. (s, X, b) \notin R) \Rightarrow (s, X \cup Y, a) \in R\).

- \(\text{dom}R_{\Sigma}^{\text{fin}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is finite.

- \(\text{dom}R_{\Sigma}^{\text{arb}} = \{(T, D, R) \mid T1, D1, R1, R2, R3, RRS\}, \Sigma\) is arbitrary.

- \(\text{dom}R_{\Sigma}^{m} = \{(T, D, R) \mid T1, D1, R1, R2, R3', RRS\}, \Sigma\) is arbitrary.

- As \(R3'\) implies \(R3\): \(\text{dom}R_{\Sigma}^{\text{fin}} \subseteq \text{dom}R_{\Sigma}\).
The Stable Revivals Model in CSP-Prover

D G Samuel (Swansea), Y Isobe (AIST, Japan), M Roggenbach (Swansea)

Theorem Proving for Process Algebra

The stable revivals model
 Semantics of the stable revivals model
 The Domain of the stable revivals model

CSP Prover
 Syntax of CSP-Prover

Implementing the stable revivals model
 Steps in Implementing the model
 Type correctness
 Recursive processes

Validation of algebraic laws

Conclusion

CSP-Prover
CSP-Prover is a proof infrastructure to prove CSP process refinement and equality proofs using Isabelle/HOL.

- Developed by Yoshinao Isobe (AIST, Japan) and Markus Roggenbach (Swansea University, UK)
- Proofs on infinite state systems, which may also have infinite non-determinism.
- Currently fully supports the traces model and the stable failures model.
CSP-Prover

- CSP-Prover is a proof infrastructure to prove CSP process refinement and equality proofs using Isabelle/HOL.
- Developed by Yoshinao Isobe (AIST, Japan) and Markus Roggenbach (Swansea University, UK)
- Proofs on infinite state systems, which may also have infinite non-determinism.
- Currently fully supports the traces model and the stable failures model.
CSP-Prover

- CSP-Prover is a proof infrastructure to prove CSP process refinement and equality proofs using Isabelle/HOL.
- Developed by Yoshinao Isobe (AIST, Japan) and Markus Roggenbach (Swansea University, UK)
- Proofs on infinite state systems, which may also have infinite non-determinism.
- Currently fully supports the traces model and the stable failures model.
CSP-Prover

- CSP-Prover is a proof infrastructure to prove CSP process refinement and equality proofs using Isabelle/HOL.
- Developed by Yoshinao Isobe (AIST, Japan) and Markus Roggenbach (Swansea University, UK)
- Proofs on infinite state systems, which may also have infinite non-determinism.
- Currently fully supports the traces model and the stable failures model.
CSP-Prover with the stable revivals model

Two major parts: Reusable parts and Instantiated parts.

- The reusable part is independent of specific CSP models.
- Instantiated parts are built on the top of reusable part.
CSP-Prover with the stable revivals model

- Two major parts: Reusable parts and Instantiated parts.
- The reusable part is independent of specific CSP models.
- Instantiated parts are built on the top of reusable part.
Two major parts: Reusable parts and Instantiated parts.

- The reusable part is independent of specific CSP models.
- Instantiated parts are built on the top of reusable part.
Syntax of CSP-Prover: CSP_{TP}

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P ::= Skip$</td>
<td>%% terminating process</td>
</tr>
<tr>
<td>$</td>
<td>Stop$</td>
</tr>
<tr>
<td>$</td>
<td>Div$</td>
</tr>
<tr>
<td>$</td>
<td>a \rightarrow P$</td>
</tr>
<tr>
<td>$</td>
<td>? x : A \rightarrow P(x)$</td>
</tr>
<tr>
<td>$</td>
<td>P \sqcap P$</td>
</tr>
<tr>
<td>$</td>
<td>P \sqcap P$</td>
</tr>
<tr>
<td>$</td>
<td>!! c : C \bullet P(c)$</td>
</tr>
<tr>
<td>$</td>
<td>if b \ then \ P \ else \ P$</td>
</tr>
<tr>
<td>$</td>
<td>P \parallel [X] \parallel P$</td>
</tr>
<tr>
<td>$</td>
<td>P \setminus X$</td>
</tr>
<tr>
<td>$</td>
<td>P[[r]]$</td>
</tr>
<tr>
<td>$</td>
<td>P \odot P$</td>
</tr>
<tr>
<td>$</td>
<td>P \downarrow n$</td>
</tr>
<tr>
<td>$</td>
<td>P</td>
</tr>
</tbody>
</table>

where $A, X \subseteq \Sigma$, $C \subseteq \mathcal{P}(\mathcal{P}(\Sigma)) \cup \mathcal{P}(\text{Nat})$, \cup is a disjoint union of two sets, b is a condition, $r \in \mathcal{P}(\Sigma \times \Sigma)$, and $n \in \text{Nat}$.
Implementing the stable revivals model
Implementation Steps

- Create a new type to represent the domain of the model.
- Prove that this domain is a complete partial order.
- Encode the semantic functions of the model.
- Prove type correctness (well definedness) of these semantic functions.
- Prove that these semantic functions are continuous.
- Provide proof infrastructure for recursive processes.
Implementation Steps

- Create a new type to represent the domain of the model.
- Prove that this domain is a complete partial order.
- Encode the semantic functions of the model.
- Prove type correctness (well definedness) of these semantic functions.
- Prove that these semantic functions are continuous.
- Provide proof infrastructure for recursive processes.
Implementation Steps

- Create a new type to represent the domain of the model.
- Prove that this domain is a complete partial order.
- Encode the semantic functions of the model.
- Prove type correctness (well definedness) of these semantic functions.
- Prove that these semantic functions are continuous.
- Provide proof infrastructure for recursive processes.
Implementation Steps

- Create a new type to represent the domain of the model.
- Prove that this domain is a complete partial order.
- Encode the semantic functions of the model.
- Prove type correctness (well definedness) of these semantic functions.
- Prove that these semantic functions are continuous.
- Provide proof infrastructure for recursive processes.
Implementation Steps

- Create a new type to represent the domain of the model.
- Prove that this domain is a complete partial order.
- Encode the semantic functions of the model.
- Prove type correctness (well definedness) of these semantic functions.
- Prove that these semantic functions are continuous.
- Provide proof infrastructure for recursive processes.
Implementation Steps

- Create a new type to represent the domain of the model.
- Prove that this domain is a complete partial order.
- Encode the semantic functions of the model.
- Prove type correctness (well definedness) of these semantic functions.
- Prove that these semantic functions are continuous.
- Provide proof infrastructure for recursive processes.
Create a new type for the domain of the model

- Create a type to represent the revivals components:
  ```
  types
  'a revival = "'a trace * 'a event set * 'a event"
  typedef 'a setR = "{ R :: ('a revivals set). HC_RT(R) & HC_RRS(R) & HC_R2(R) & HC_R3(R) }"
  ```

- Define the Cartesian product:
  ```
  types 'a domTsetDsetR =
  "('a domT * 'a setD * 'a setR)"
  ```

- Restrict it to 'healthy' elements:
  ```
  typedef 'a domR = "{ X :: ('a domTsetDsetR). HC_D1(X) & HC_R1(X) }"
  ```

- Prove this restriction to be non-empty:
  ```
  apply (rule_tac x = "({<>}t , {}d, {}r)" in exI)
  ```
Create a new type for the domain of the model

- Create a type to represent the revivals components:
 types
 'a revival = "('a trace * 'a event set * 'a event)"
 typedef 'a setR = "{ R ::('a revivals set). HC_RT(R) & HC_RRS(R) & HC_R2(R) & HC_R3(R) }"

- Define the Cartesian product:
 types 'a domTsetDsetR = "('a domT * 'a setD * 'a setR)"

- Restrict it to ‘healthy’ elements:
 typedef 'a domR = "{ X ::('a domTsetDsetR). HC_D1(X) & HC_R1(X) }"

- Prove this restriction to be non-empty:
 apply (rule_tac x = "({<>})t , {}d , {}r" in exI)
Create a new type for the domain of the model

- Create a type to represent the revivals components:
 types
 'a revival = "(’a trace * ’a event set * ’a event)"
 typedef 'a setR = "{ R ::(’a revivals set). HC_RT(R) & HC_RRS(R) & HC_R2(R) & HC_R3(R) }"

- Define the Cartesian product:
 types 'a domTsetDsetR =
 "(’a domT * ’a setD * ’a setR)"

- Restrict it to ‘healthy’ elements:
 typedef 'a domR = "{ X ::(’a domTsetDsetR). HC_D1(X) & HC_R1(X) }"

- Prove this restriction to be non-empty:
 apply (rule_tac x = "({<>}t , {}d, {}r)" in exI)
Create a new type for the domain of the model

- Create a type to represent the revivals components:
  ```
  types
  'a revival = "('a trace * 'a event set * 'a event)"
  typedef 'a setR = "{ R ::('a revivals set). HC_RT(R) & HC_RRS(R) & HC_R2(R) & HC_R3(R) }"
  ```

- Define the Cartesian product:
  ```
  types 'a domTsetDsetR = "('a domT * 'a setD * 'a setR)"
  ```

- Restrict it to ‘healthy’ elements:
  ```
  typedef 'a domR = "{ X ::('a domTsetDsetR). HC_D1(X) & HC_R1(X) }"
  ```

- Prove this restriction to be non-empty:
  ```
  apply (rule_tac x = "({<>}t , {}d, {}r)" in exI)
  ```
Create a new type for the domain of the model

- Create a type to represent the revivals components:

  ```ml
  'a revival = "('a trace * 'a event set * 'a event)"
  typedef 'a setR = "{ R ::('a revivals set). HC_RT(R) & HC_RRS(R) & HC_R2(R) & HC_R3(R) }"
  ```

- Define the Cartesian product:

  ```ml
  types 'a domTsetDsetR = "('a domT * 'a setD * 'a setR)"
  ```

- Restrict it to ‘healthy’ elements:

  ```ml
  typedef 'a domR = "{ X ::('a domTsetDsetR). HC_D1(X) & HC_R1(X) }"
  ```

- Prove this restriction to be non-empty:

  ```ml
  apply (rule_tac x = "({<>}t , {}d, {}r)" in exI)
  ```
Create a new type for the domain of the model

- Create a type to represent the revivals components:
  ```
  types
  'a revival = "('a trace * 'a event set * 'a event)"
  typedef 'a setR = "{ R ::('a revivals set). HC_RT(R) & HC_RRS(R) & HC_R2(R) & HC_R3(R) }"
  ```

- Define the Cartesian product:
  ```
  types 'a domTsetDsetR =
  "('a domT * 'a setD * 'a setR)"
  ```

- Restrict it to ‘healthy’ elements:
  ```
  typedef 'a domR = "{ X ::('a domTsetDsetR). HC_D1(X) & HC_R1(X) }"
  ```

- Prove this restriction to be non-empty:
  ```
  apply (rule_tac x = "({<>}t , {}d, {}r)" in exI)
  ```
Prove the domain to be a CPO

- cpo – axiomatic class provided by CSP-Prover

  ```
  instance domR :: (type) cpo
  apply (intro_classes)
  ```

- we prove
 - UnionR Rs is an upper bound of set Rs.
    ```
    lemma UnionR_isUB : "(UnionR Fs) isUB Fs"
    ```
 - UnionR Rs is the least upper bound of set Rs.
    ```
    lemma UnionR_isLUB : "UnionR Fs isLUB Fs"
    ```
 - The least upper bound of Fs is UnionR Rs.
    ```
    lemma isLUB_UnionR_only_if: 
    "F isLUB Fs ==> F = UnionR Fs"
    ```

- Encode the semantic function of the model.
The Stable Revivals Model in CSP-Prover

D G Samuel (Swansea), Y Isobe (AIST, Japan), M Roggenbach (Swansea)

Theorem Proving for Process Algebra

The stable revivals model
Semantics of the stable revivals model
The Domain of the stable revivals model
CSP Prover
Syntax of CSP-Prover
Implementing the stable revivals model
Steps in Implementing the model
Type correctness
Recursive processes
Validation of algebraic laws
Conclusion

Prove the domain to be a CPO

- cpo – axiomatic class provided by CSP-Prover
 instance domR :: (type) cpo
 apply (intro_classes)

- we prove
 - UnionR Rs is an upper bound of set Rs.
 lemma UnionR_isUB : "(UnionR Fs) isUB Fs"
 - UnionR Rs is the least upper bound of set Rs.
 lemma UnionR_isLUB : "UnionR Fs isLUB Fs"
 - The least upper bound of Fs is UnionR Rs.
 lemma isLUB_UnionR_only_if:
 "F isLUB Fs ==> F = UnionR Fs"

- Encode the semantic function of the model.
Prove the domain to be a CPO

- cpo – axiomatic class provided by CSP-Prover

 instance domR :: (type) cpo
 apply (intro_classes)

- we prove

 - UnionR Rs is an upper bound of set Rs.
 lemma UnionR_isUB : "(UnionR Fs) isUB Fs"

 - UnionR Rs is the least upper bound of set Rs.
 lemma UnionR_isLUB : "UnionR Fs isLUB Fs"

 - The least upper bound of Fs is UnionR Rs.
 lemma isLUB_UnionR_only_if:
 "F isLUB Fs ==> F = UnionR Fs"

- Encode the semantic function of the model.
Prove the domain to be a CPO

- cpo – axiomatic class provided by Csp-Prover

 instance domR :: (type) cpo
 apply (intro_classes)

- we prove
 - UnionR Rs is an upper bound of set Rs.
 lemma UnionR_isUB : "(UnionR Fs) isUB Fs"
 - UnionR Rs is the least upper bound of set Rs.
 lemma UnionR_isLUB : "UnionR Fs isLUB Fs"
 - The least upper bound of Fs is UnionR Rs.
 lemma isLUB_UnionR_only_if:
 "F isLUB Fs ==> F = UnionR Fs"

- Encode the semantic function of the model.
Prove the domain to be a CPO

- cpo – axiomatic class provided by Csp-Prover
- instance domR :: (type) cpo
 apply (intro_classes)
- we prove
 - UnionR Rs is an upper bound of set Rs.
 lemma UnionR_isUB : "(UnionR Fs) isUB Fs"
 - UnionR Rs is the least upper bound of set Rs.
 lemma UnionR_isLUB : "UnionR Fs isLUB Fs"
 - The least upper bound of Fs is UnionR Rs.
 lemma isLUB_UnionR_only_if: "F isLUB Fs ==> F = UnionR Fs"
- Encode the semantic function of the model.
Type correctness

- Type correctness for the prefix choice operator

- Type correctness for the prefix choice operator

\[T(a \rightarrow P) = \{\langle \rangle\} \cup \{\langle a \rangle \triangle s \mid s \in T(P)\} \]

\[D(a \rightarrow P) = \{\langle a \rangle \triangle s \mid s \in D(P)\} \]

\[R(a \rightarrow P) = \{\langle \langle\rangle, X, a \rangle \mid a \notin X\} \]

\[\cup \{\langle a \rangle \triangle s, X, b \rangle \mid (s, X, b) \in R(P)\} \]
Type correctness

- Type correctness for the prefix choice operator

 \[T(a \to P) = \{\langle \rangle\} \cup \{\langle a \rangle \triangleleft s \mid s \in T(P)\} \]

 \[D(a \to P) = \{\langle a \rangle \triangleleft s \mid s \in D(P)\} \]

 \[R(a \to P) = \{(\langle \rangle, X, a) \mid a \notin X\} \]

 \[\cup \{(\langle a \rangle \triangleleft s, X, b) \mid (s, X, b) \in R(P)\} \]}
Type correctness

- Type correctness for the prefix choice operator
 \[T(a \rightarrow P) = \{\langle\rangle\} \cup \{\langle a \rangle \triangleright s \mid s \in T(P)\} \]
 \[D(a \rightarrow P) = \{\langle a \rangle \triangleright s \mid s \in D(P)\} \]
 \[R(a \rightarrow P) = \{(\langle\rangle, X, a) \mid a \not\in X\} \]
 \[\cup \{(\langle a \rangle \triangleright s, X, b) \mid (s, X, b) \in R(P)\} \]
Type correctness

- Type correctness for the prefix choice operator
 \[T(a \rightarrow P) = \{ \langle \rangle \} \cup \{ \langle a \rangle \triangleright s \mid s \in T(P) \} \]
 \[D(a \rightarrow P) = \{ \langle a \rangle \triangleright s \mid s \in D(P) \} \]
 \[R(a \rightarrow P) = \{ \langle \langle \rangle, X, a \rangle \mid a \notin X \} \]
 \[\cup \{ \langle a \rangle \triangleright s, X, b \mid (s, X, b) \in R(P) \} \]
Type correctness

- Type correctness for the prefix choice operator

 \[
 T(a \rightarrow P) = \{\langle \rangle \} \cup \{\langle a \rangle \uparrow s \mid s \in T(P)\} \\
 D(a \rightarrow P) = \{\langle a \rangle \uparrow s \mid s \in D(P)\} \setminus \{\langle a \rangle \uparrow s \mid s \in R(P)\} \\
 R(a \rightarrow P) = \{((\langle \rangle, X, a) \mid a \not\in X\} \\
 \cup \{(\langle a \rangle \uparrow s, X, b) \mid (s, X, b) \in R(P)\}
 \]

D G Samuel (Swansea),
Y Isobe (AIST, Japan),
M Roggenbach (Swansea)
Type correctness of renaming

- $domR_{\Sigma}^{\text{fin}}$: renaming is type correct (Roscoe’s setting!).
- $domR_{\Sigma}^{\text{arb}}$: renaming fails to be type correct.

Counter Example:

- $\Sigma = \mathcal{N} \cup \{a, b\}$.
- $C = (\{\langle\rangle, \langle a\rangle, \langle b\rangle\},$

- $\{\},

- $\{((\langle\rangle, X, a), (\langle\rangle, X, b) | X \in \mathcal{P}_{\text{fin}}(\mathcal{N})\})$

where $\mathcal{P}_{\text{fin}}(\mathcal{N})$ is a set of all finite sets of \mathcal{N}.
- $Rel = \{(a, a)\} \cup \{(n, b) | n \in \mathcal{N}\}$

- $domR_{\Sigma}^{m}$: renaming is type correct.
Type correctness of renaming

- $domR_{\Sigma}^{\text{fin}}$: renaming is type correct (Roscoe’s setting!).
- $domR_{\Sigma}^{\text{arb}}$: renaming fails to be type correct.

Counter Example:

- $\Sigma = \mathcal{N} \cup \{a, b\}$.
- $C = (\{\langle \rangle, \langle a \rangle, \langle b \rangle\},$

 $\{\},$

 $\{(\langle \rangle, X, a), (\langle \rangle, X, b) \mid X \in P_{\text{fin}}(\mathcal{N})\})$

 where $P_{\text{fin}}(\mathcal{N})$ is a set of all finite sets of \mathcal{N}.
- $Rel = \{(a, a)\} \cup \{(n, b) \mid n \in N\}$

- $domR_{\Sigma}^{m}$: renaming is type correct.
Type correctness of renaming

- $\text{domR}^\text{fin}_\Sigma$: renaming is type correct (Roscoe’s setting!).

- $\text{domR}^\text{arb}_\Sigma$: renaming fails to be type correct.

Counter Example:

- $\Sigma = \mathcal{N} \cup \{a, b\}$.
- $C = (\{\langle \rangle, \langle a \rangle, \langle b \rangle\},$
 \{\},
 \{\langle \langle \rangle \rangle, X, a\}, \langle \langle \rangle \rangle, X, b\mid X \in P_{\text{fin}}(\mathcal{N})\})$
 where $P_{\text{fin}}(\mathcal{N})$ is a set of all finite sets of \mathcal{N}.

- $\text{Rel} = \{(a, a)\} \cup \{(n, b) \mid n \in N\}$

- domR^m_Σ: renaming is type correct.
Type correctness of renaming

- \(\text{domR}_{\Sigma}^{\text{fin}} \): renaming is type correct (Roscoe’s setting!).
- \(\text{domR}_{\Sigma}^{\text{arb}} \): renaming fails to be type correct.

Counter Example:

- \(\Sigma = \mathcal{N} \cup \{a, b\} \).
- \(C = \{\mathcal{O}, \{a\}, \{b\}\}, \),
 \(\{\}, \),
 \(\{((\mathcal{O}, X, a), (\mathcal{O}, X, b) \mid X \in \mathcal{P}_{\text{fin}}(\mathcal{N})\}\} \)

where \(\mathcal{P}_{\text{fin}}(\mathcal{N}) \) is a set of all finite sets of \(\mathcal{N} \).
- \(\text{Rel} = \{(a, a)\} \cup \{(n, b) \mid n \in \mathbb{N}\} \)

- \(\text{domR}_{\Sigma}^m \): renaming is type correct.
Type correctness of renaming

- \(\text{dom}R^\text{fin}_\Sigma \): renaming is type correct (Roscoe’s setting!).
- \(\text{dom}R^\text{arb}_\Sigma \): renaming fails to be type correct.

Counter Example:
- \(\Sigma = \mathcal{N} \cup \{a, b\} \).
- \(C = \{\langle \rangle, \langle a \rangle, \langle b \rangle\}, \{\}, \{((\langle \rangle, X, a), (\langle \rangle, X, b) | X \in P_{\text{fin}}(\mathcal{N})\}\} \)
 where \(P_{\text{fin}}(\mathcal{N}) \) is a set of all finite sets of \(\mathcal{N} \).
- \(\text{Rel} = \{(a, a)\} \cup \{(n, b) | n \in N\} \)
- \(\text{dom}R^m_\Sigma \): renaming is type correct.
The Stable Revivals Model in CSP-Prover
D G Samuel (Swansea), Y Isobe (AIST, Japan), M Roggenbach (Swansea)

Theorem Proving for Process Algebra
The stable revivals model
Semantics of the stable revivals model
The Domain of the stable revivals model
CSP Prover
Syntax of CSP-Prover
Implementing the stable revivals model
Steps in Implementing the model
Type correctness
Recursive processes
Validation of algebraic laws
Conclusion

Recursive processes: Continuity

- For each process name \(N \in \Pi \) (a set of all process names), a process equation is defined:
 \[N(x_1, x_2, \ldots x_n) = P \]
 where \(P \in \text{Proc}(\Pi, \Sigma) \), the process name \(N \) behaves like the process \(P \).

- A special function \(\text{PNfun}_\Pi : \Pi \rightarrow \text{Proc}(\Pi, \Sigma) \), which is called a \textit{process-name function}, in order to describe the right hand sides of defining equations.

- \(\left[[\text{PNfun}_\Pi]_{\text{fun}} \right]_{\mathcal{R}} \) is continuous.

- Finally, the semantics \([P]_{\mathcal{R}} \) of each process \(P \) is defined as follows: \([P]_{\mathcal{R}} = [P]_{\mathcal{R}(\text{MR}_\Pi)} \). Consequently,
 \[[N]_{\mathcal{R}} = [N]_{\mathcal{R}(\text{MR}_\Pi)} \]

- the ideal interpretation, written \(\text{MR}_\Pi \), is given as follows:
 \[\text{MR}_\Pi = \text{LFP}([\text{PNfun}_\Pi]_{\text{fun}}) \]
 where LFP represents the least fixed point.
Recursive processes: Continuity

- For each process name $N \in \Pi$ (a set of all process names), a process equation is defined:

 $$N(x_1, x_2, \ldots, x_n) = P$$

 where $P \in Proc(\Pi, \Sigma)$, the process name N behaves like the process P.

- A special function $PN_{\Pi} : \Pi \rightarrow Proc(\Pi, \Sigma)$, which is called a *process-name function*, in order to describe the right hand sides of defining equations.

- $(PN_{\Pi})_{fun}$ is continuous.

- Finally, the semantics $[P]_R$ of each process P is defined as follows: $[P]_R = [P]_{R(MR_\Pi)}$. Consequently,

 $$[N]_R = [N]_{R(MR_\Pi)}$$

- the ideal interpretation, written MR_Π, is given as follows:

 $$MR_\Pi = \text{LFP}(PN_{\Pi})_{fun}$$

 where LFP represents the least fixed point.
Recursive processes: Continuity

- For each process name $N \in \Pi$ (a set of all process names), a process equation is defined:

$$N(x_1, x_2, \ldots x_n) = P$$

where $P \in \text{Proc}_{(\Pi, \Sigma)}$, the process name N behaves like the process P.

- A special function $\text{PNfun}_\Pi : \Pi \rightarrow \text{Proc}_{(\Pi, \Sigma)}$, which is called a *process-name function*, in order to describe the right hand sides of defining equations.

- $(\llbracket \text{PNfun}_\Pi \rrbracket_{f_{\text{un}}})$ is continuous.

- Finally, the semantics $\llbracket P \rrbracket_{\mathcal{R}}$ of each process P is defined as follows: $\llbracket P \rrbracket_{\mathcal{R}} = \llbracket P \rrbracket_{\mathcal{R}(\text{MR}_\Pi)}$. Consequently,

$$\llbracket N \rrbracket_{\mathcal{R}} = \llbracket N \rrbracket_{\mathcal{R}(\text{MR}_\Pi)}$$

- the ideal interpretation, written MR_Π, is given as follows:

$$\text{MR}_\Pi = \text{LFP}(\llbracket \text{PNfun}_\Pi \rrbracket_{f_{\text{un}}})$$

where LFP represents the least fixed point.
Recursive processes: Continuity

- For each process name $N \in \Pi$ (a set of all process names), a process equation is defined:

$$N(x_1, x_2, \ldots x_n) = P$$

where $P \in Proc(\Pi, \Sigma)$, the process name N behaves like the process P.

- A special function $PNfun_\Pi : \Pi \rightarrow Proc(\Pi, \Sigma)$, which is called a *process-name function*, in order to describe the right hand sides of defining equations.

- $(\llbracket PNfun_\Pi \rrbracket_{\mathcal{R}})$ is continuous.

- Finally, the semantics $\llbracket P \rrbracket_{\mathcal{R}}$ of each process P is defined as follows: $\llbracket P \rrbracket_{\mathcal{R}} = \llbracket P \rrbracket_{\mathcal{R}(MR_\Pi)}$. Consequently,

$$\llbracket N \rrbracket_{\mathcal{R}} = \llbracket N \rrbracket_{\mathcal{R}(MR_\Pi)}$$

- The ideal interpretation, written MR_Π, is given as follows:

$$MR_\Pi = \text{LFP}(\llbracket PNfun_\Pi \rrbracket_{\mathcal{R}})$$

where LFP represents the least fixed point.
Recursive processes: Continuity

- For each process name $N \in \Pi$ (a set of all process names), a process equation is defined:
 $$N(x_1, x_2, \ldots x_n) = P$$
 where $P \in \text{Proc}(\Pi, \Sigma)$, the process name N behaves like the process P.

- A special function $\text{PNfun}_\Pi : \Pi \rightarrow \text{Proc}(\Pi, \Sigma)$, which is called a process-name function, in order to describe the right hand sides of defining equations.

- $(\text{PNfun}_\Pi)^{\text{fun}}$ is continuous.

- Finally, the semantics $\llbracket P \rrbracket_R$ of each process P is defined as follows: $\llbracket P \rrbracket_R = \llbracket P \rrbracket_R^{\text{MR}_\Pi}$. Consequently,
 $$\llbracket \$N \rrbracket_R = \llbracket \$N \rrbracket_R^{\text{MR}_\Pi}$$

- the ideal interpretation, written MR_Π, is given as follows:
 $$\text{MR}_\Pi = \text{LFP}(\text{PNfun}_\Pi)^{\text{fun}}$$
 where LFP represents the least fixed point.
Validation of algebraic laws
Some algebraic laws

- As expected: Internal choice distributes over external choices fails.

\[(P \square Q) \sqcap R \neq_R (P \sqcap R) \square (Q \sqcap R)\]

- Distributive law of prefixing holds:

\[
\begin{align*}
\forall a : A \rightarrow (P(a) \sqcap Q(a)) \\
\rightarrow_R (\forall a : A \rightarrow P(a)) \sqcap (\forall a : A \rightarrow Q(a))
\end{align*}
\]

- Over \(domR_{\Sigma}^{arb}\) and \(domR_{\Sigma}^{m}\) the following laws have been proved: (\(\sqcap\)-idem), (\(\square\)-sym), (\(\sqcap\)-sym), (\(||X||\)-sym), (\(\square\)-assoc), (\(\sqcap\)-assoc), (\(\square\)-\(\sqcap\)-dist), (\(Stop\)-\(||X||\)), (\(\circ\)-step), (prefix-step), and (\(\downarrow\)-step).
Some algebraic laws

- As expected: Internal choice distributes over external choices fails.

\[(P \square Q) \sqcap R \neq R (P \sqcap R) \square (Q \sqcap R) \]

- Distributive law of prefixing holds:

\[?a : A \rightarrow (P(a) \sqcap Q(a)) = R (?a : A \rightarrow P(a)) \sqcap (?a : A \rightarrow Q(a)) \]

- Over \(\text{dom}R_{\Sigma}^{arb} \) and \(\text{dom}R_{\Sigma}^{m} \) the following laws have been proved: (\(\sqcap \)-idem), (\(\square \)-sym), (\(\sqcap \)-sym), (\(||[X]|| \)-sym), (\(\square \)-assoc), (\(\sqcap \)-assoc), (\(\square \)-\(\sqcap \)-dist), (\(\text{Stop} \)-\(||[X]|| \)), (\(g \)-step), (prefix-step), and (\(\downarrow \)-step).
Some algebraic laws

- As expected: Internal choice distributes over external choices fails.

\[(P \ Diamond Q) \sqcap R \neq_R (P \sqcap R) \ Diamond (Q \sqcap R)\]

- Distributive law of prefixing holds:

\[\text{?}a : A \rightarrow (P(a) \sqcap Q(a)) =_R (\text{?}a : A \rightarrow P(a)) \sqcap (\text{?}a : A \rightarrow Q(a))\]

- Over \(\text{dom} R^{arb}_\Sigma\) and \(\text{dom} R^m_\Sigma\) the following laws have been proved: (\(\sqcap\)-idem), (\(\Box\)-sym), (\(\sqcap\)-sym), (\(\parallel X \parallel\)-sym), (\(\Box\)-assoc), (\(\sqcap\)-assoc), (\(\Box\)-\(\sqcap\)-dist), (\(\text{Stop-} \parallel X \parallel\)), (\(\searrow\)-step), (prefix-step), and (\(\downarrow\)-step).
Modification of $\text{deadlock}(\textstyle?x : A \rightarrow P)$

Step law of STOP:

\[
\text{Stop} = \textstyle?x : \{\emptyset\} \rightarrow Q
\]

- $\text{deadlocks}(\text{Stop}) = \{\langle \rangle \}$
- $\text{deadlock}(\textstyle?x : A \rightarrow P) =$

Original Version:

\[
\{ s \mid s = \langle a \rangle \uplus t, a \in A, t \in \text{deadlock}(P) \}
\]

Our variant:

\[
\{ s \mid s = \langle a \rangle \uplus t, a \in A, t \in \text{deadlock}(P) \}
\]

\[
\lor (s = \langle \rangle \uplus A = \emptyset) \}
\]

Consequence of this change:

modification of $\text{deadlock}(P[R])$.

The Stable Revivals Model in CSP-Prover

D G Samuel (Swansea), Y Isobe (AIST, Japan), M Roggenbach (Swansea)

Theorem Proving for Process Algebra

The stable revivals model
Semantics of the stable revivals model
The Domain of the stable revivals model
CSP-Prover
Syntax of CSP-Prover
Implementing the stable revivals model
Steps in Implementing the model
Type correctness
Recursive processes
Validation of algebraic laws
Conclusion
Modification of $\text{deadlock}(?x : A \rightarrow P)$

Step law of STOP:

\[
\text{Stop} = ?x : \{\emptyset\} \rightarrow Q
\]

- $\text{deadlocks}(\text{Stop}) = \{ \langle \rangle \}$
- $\text{deadlock}(?x : A \rightarrow P) =$

Original Version:

\[\{ s \mid s = \langle a \rangle \uparrow t, a \in A, t \in \text{deadlock}(P) \}\]

Our variant:

\[\{ s \mid s = \langle a \rangle \uparrow t, a \in A, t \in \text{deadlock}(P) \}
\quad \vee \quad (s = \langle \rangle \uparrow A = \emptyset)\}

Consequence of this change:

modification of $\text{deadlock}(P[R])$.
Modification of \(\textit{deadlock}(\ ?x : A \rightarrow P) \)

Step law of STOP:

\[
\text{Stop} = \ ?x : \{\emptyset\} \rightarrow Q
\]

\begin{itemize}
 \item \(\text{deadlocks}(\text{Stop}) = \{\langle\rangle\} \)
 \item \(\text{deadlock}(\ ?x : A \rightarrow P) = \)
\end{itemize}

Original Version:

\[
\{ s \mid s = \langle a \rangle \bigtriangleup t, a \in A, t \in \text{deadlock}(P) \}
\]

Our variant:

\[
\{ s \mid s = \langle a \rangle \bigtriangleup t, a \in A, t \in \text{deadlock}(P) \\
\quad \quad \quad \bigvee (s = \langle\rangle \land A = \emptyset) \}
\]

Consequence of this change:

modification of \(\text{deadlock}(P[R]) \).
Modification of \textit{deadlock}(?x : A \rightarrow P)

Step law of STOP:

\[
\text{Stop} = ?x : \{\emptyset\} \rightarrow Q
\]

- \textit{deadlocks}(\text{Stop}) = \{\langle \rangle \}\]
- \textit{deadlock}(?x : A \rightarrow P) =

Original Version:

\{s \mid s = \langle a \rangle \blacktriangledown t, a \in A, t \in \text{deadlock}(P)\}

Our variant:

\{s \mid s = \langle a \rangle \blacktriangledown t, a \in A, t \in \text{deadlock}(P) \land (s = \langle \rangle \land A = \emptyset)\}

Consequence of this change:

modification of \textit{deadlock}(P[R]).
Modification of \textit{deadlock}(\(?x : A \rightarrow P\))

Step law of STOP:

\[
\text{Stop} = ?x : \{\emptyset\} \rightarrow Q \]

- \(\text{deadlocks}(\text{Stop}) = \{\langle \rangle \}\)
- \(\text{deadlock}(?x : A \rightarrow P) = \)

Original Version:
\[
\{ s \mid s = \langle a \rangle \bowtie t, a \in A, t \in \text{deadlock}(P) \}
\]

Our variant: \[
\{ s \mid s = \langle a \rangle \bowtie t, a \in A, t \in \text{deadlock}(P) \\
\quad \quad \lor (s = \langle \rangle \land A = \emptyset) \}
\]

Consequence of this change:
modification of \textit{deadlock}(P[R]).
Modification of $\text{deadlock}(\forall x : A \rightarrow P)$

Step law of STOP:

\[
\text{Stop} = \forall x : \{\emptyset\} \rightarrow Q
\]

- $\text{deadlocks} (\text{Stop}) = \{\langle \rangle\}$
- $\text{deadlock}(\forall x : A \rightarrow P) = \quad$

Original Version:

\[
\{ s \mid s = \langle a \rangle \upharpoonright t, a \in A, t \in \text{deadlock}(P) \}\]

Our variant: \[
\{ s \mid s = \langle a \rangle \upharpoonright t, a \in A, t \in \text{deadlock}(P) \\
\quad \lor (s = \langle \rangle \upharpoonright A = \emptyset) \}\}

Consequence of this change:

modification of $\text{deadlock}(P[R])$.
Conclusion
Summary

Summary:

- **Mechanical Verification of the model \(\mathcal{R} \):**
 - \(\text{dom}R_{\Sigma}^{\text{fin}}, \text{dom}R_{\Sigma}^{\text{arb}} \) and \(\text{dom}R_{\Sigma}^{m} \) are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- **Working Implementation of the model \(\mathcal{R} \).**

- **Suggestions to improve the model \(\mathcal{R} \):**
 - \(\text{dom}R_{\Sigma}^{m} \) for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:

- Validate more algebraic laws.
- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:

- Mechanical Verification of the model \(\mathcal{R} \):
 - \(\text{dom} R^\text{fin} \), \(\text{dom} R^\text{arb} \), and \(\text{dom} R^m \) are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- Working Implementation of the model \(\mathcal{R} \).

- Suggestions to improve the model \(\mathcal{R} \):
 - \(\text{dom} R^m \) for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:

- Validate more algebraic laws.

- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:

- Mechanical Verification of the model \mathcal{R}:
 - $\text{dom} R^\text{fin}_\Sigma$, $\text{dom} R^\text{arb}_\Sigma$ and $\text{dom} R^m_\Sigma$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- Working Implementation of the model \mathcal{R}.

- Suggestions to improve the model \mathcal{R}:
 - $\text{dom} R^m_\Sigma$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.
- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary

Summary:-

- Mechanical Verification of the model R:
 - $\text{dom}R^\text{fin}_{\Sigma}$, $\text{dom}R^\text{arb}_{\Sigma}$ and $\text{dom}R^m_{\Sigma}$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- Working Implementation of the model R.

- Suggestions to improve the model R:
 - $\text{dom}R^m_{\Sigma}$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.

- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:

- **Mechanical Verification of the model \mathcal{R}:**
 - $\text{dom}R^\text{fin}_\Sigma$, $\text{dom}R^\text{arb}_\Sigma$ and $\text{dom}R^m_\Sigma$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- **Working Implementation of the model \mathcal{R}**.

- **Suggestions to improve the model \mathcal{R}:**
 - $\text{dom}R^m_\Sigma$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.
- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary

Summary:-

- **Mechanical Verification of the model \mathcal{R}:**
 - $domR^\text{fin}_\Sigma$, $domR^arb_\Sigma$ and $domR^m_\Sigma$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- **Working Implementation of the model \mathcal{R}**.

- **Suggestions to improve the model \mathcal{R}:**
 - $domR^m_\Sigma$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.

- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:

- **Mechanical Verification of the model \(\mathcal{R} \):**
 - \(\text{dom}\mathcal{R}_{\Sigma}^{\text{fin}} \), \(\text{dom}\mathcal{R}_{\Sigma}^{\text{arb}} \), and \(\text{dom}\mathcal{R}_{\Sigma}^{m} \) are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- **Working Implementation of the model \(\mathcal{R} \).**

- **Suggestions to improve the model \(\mathcal{R} \):**
 - \(\text{dom}\mathcal{R}_{\Sigma}^{m} \) for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:

- Validate more algebraic laws.
- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary

Summary:-

- Mechanical Verification of the model \mathcal{R}:
 - $\text{dom}R^\text{fin}_\Sigma$, $\text{dom}R^\text{arb}_\Sigma$ and $\text{dom}R^m_\Sigma$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- Working Implementation of the model \mathcal{R}.

- Suggestions to improve the model \mathcal{R}:
 - $\text{dom}R^m_\Sigma$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.

- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:

- Mechanical Verification of the model \mathcal{R}:
 - $\text{dom}R^\text{fin}_\Sigma$, $\text{dom}R^\text{arb}_\Sigma$ and $\text{dom}R^m_\Sigma$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- Working Implementation of the model \mathcal{R}.

- Suggestions to improve the model \mathcal{R}:
 - $\text{dom}R^m_\Sigma$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:

- Validate more algebraic laws.

- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:

- Mechanical Verification of the model \mathcal{R}:
 - $domR_{\Sigma}^{\text{fin}}$, $domR_{\Sigma}^{\text{arb}}$ and $domR_{\Sigma}^{m}$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.
- Working Implementation of the model \mathcal{R}.
- Suggestions to improve the model \mathcal{R}:
 - $domR_{\Sigma}^{m}$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.
- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.
Summary:-

- Mechanical Verification of the model \mathcal{R}:
 - $\text{dom}R^\text{fin}_\Sigma$, $\text{dom}R^\text{arb}_\Sigma$ and $\text{dom}R^m_\Sigma$ are CPOs.
 - Semantic function are type correct and continuous.
 - Most algebraic laws hold.

- Working Implementation of the model \mathcal{R}.

- Suggestions to improve the model \mathcal{R}:
 - $\text{dom}R^m_\Sigma$ for infinite alphabets.
 - Modified semantical clauses for multiple prefix and renaming.

Future work:-

- Validate more algebraic laws.

- Case study on the implementation: a good example would be on-line shopping example given in Roscoe’s original paper.