
Simulation Problems for One-Counter Machines?

Petr Jančar1, Faron Moller2, and Zdeněk Sawa1

1 Technical University of Ostrava, Czech Republic
2 Uppsala University, Sweden

Abstract. We consider decidability questions for simulation preorder
(and equivalence) for processes generated by one-counter machines. We
sketch a proof of decidability in the case when testing for zero is not
possible, and demonstrate the undecidability in the general case.

1 Introduction

A one-counter machine is a nondeterministic finite-state automaton acting
on a single counter variable ranging over the set N of nonnegative integers.
Formally, it is a tuple M = 〈Q, Σ, δ=, δ>〉 where Q is a finite set of control
states, Σ is a finite set of actions, and δ=, δ> : Q×Σ → P(Q×{−1, 0, 1}) are
transition functions (where P(A) denotes the set of subsets of A). To M we
associate the transition system 〈Γ, { a→}a∈Σ〉, where Γ = { p(n) | p ∈ Q, n ∈ N }
is the set of states and each a→ ⊆ Γ × Γ is a binary relation defined as follows:

p(n) a→ p′(n + i) iff

{
n = 0, i ≥ 0, and (p′, i) ∈ δ=(p, a); or

n > 0, and (p′, i) ∈ δ>(p, a)

Note that any transition increments, decrements, or leaves unchanged the
counter value; and a decrementing transition is only possible if the counter value
is positive. Also observe that when n > 0 the transitions of p(n) do not depend
on the actual value of n.

M is deterministic iff for any state p(n) and for any action a ∈ Σ there
is at most one state p′(n′) such that p(n) a→ p′(n′). M is a weak one-counter
machine iff δ= = δ>. Thus, a weak one-counter machine can test if its counter
is nonzero (that is, it can perform certain transitions on the proviso that its
counter is nonzero), but it cannot test if its counter is zero.

A binary relation S between the states of two (weak) one-counter machines
is a simulation iff, given 〈p(m), q(n)〉 ∈ S and p(m) a→ p′(m′), we have q(n) a→
q′(n′) with 〈p′(m′), q′(n′)〉 ∈ S. p(m) is simulated by q(n), written p(m) 4 q(n),
iff they are related by some simulation relation S; p(m) and q(n) are simulation
equivalent , written p(m) ' q(n), iff p(m) 4 q(n) and q(n) 4 p(m). If two states
are related by a symmetric simulation relation, then they are bisimilar .
? The first and third authors are partially supported by the Grant Agency of the Czech

Republic, Grant No. 201/97/0456. The second author is partially supported by TFR
grant No. 221-98-103.

J. Pavelka, G. Tel, M. Bartošek (Eds.): SOFSEM’99, LNCS 1725, pp. 404–413, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Simulation Problems for One-Counter Machines 405

Such automata, and behavioural concepts like (bi)simulation equivalence, are
enjoying renewed interest within the automata and process theory communities
due to the present active search for the dividing line between decidable and
undecidable theories for classes of infinite state systems (see, e.g., [4]). Recently,
Abdulla and Čerāns [1] outlined an extensive and involved proof of the decid-
ability of simulation preorder over weak one-counter machines. Their 16-page
extended abstract is very technical and omits the proofs of most of the crucial
lemmas. Here we outline a short proof based on simple and intuitive ideas about
colouring the plane. (Due to space limitations and further results communicated
here, we omit the proofs of some technical lemmas; for these, we refer to the
following ten page report [3].)

We then show that simulation preorder between deterministic one-counter
machines is undecidable; to do this we use a reduction from the halting problem
for Minsky machines. Finally we demonstrate the undecidability of simulation
equivalence in the general case; this contrasts with the decidability of bisimula-
tion equivalence [2].

2 Decidability for Weak One-Counter Machines

For any pair of control states 〈p, q〉 ∈ Q1×Q2 taken from two weak one-counter
machines, we can ask for what values m, n ∈ N do we have p(m) 4 q(n). We can
picture the “graphs” of the functions G〈p,q〉 : N× N→ {black, white} given by

G〈p,q〉(m, n) =
{

black, if p(m) 4 q(n);
white, if p(m) 64 q(n)

by appropriately colouring (black or white) the integral points in the first quad-
rant of the plane. Note that if p(m) 4 q(n) then p(m′) 4 q(n′) for all m′ ≤ m
and n′ ≥ n; hence the black points are upwards- and leftwards-closed, and the
white points are downwards- and rightwards-closed. For a fixed pair of states
p0(m0) and q0(n0) of these weak one-counter machines, we decide the ques-
tion “Is p0(m0) 4 q0(n0)?” by effectively constructing an initial portion of the
|Q1| × |Q2| graphs which includes the point 〈m0, n0〉, and look to the colour
of G〈p0,q0〉(m0, n0).

Define the frontier function f〈p,q〉(n) = max{m : G〈p,q〉(m, n) = black},
that is, the greatest value m such that p(m) 4 q(n); f〈p,q〉(n) = ∞ if
G〈p,q〉(m, n) = black for all m; and f〈p,q〉(n) = −1 if G〈p,q〉(0, n) = white.
This function is monotone nondecreasing, and the set of frontier points
〈f〈p,q〉(n), n〉 ∈ N× N defines the frontier of G〈p,q〉, the collection of the right-
most black points from each level. Slightly abusing notation, we use f to refer
to the frontier function as well as the frontier given by the frontier function. The
next theorem is the clue to our decidability result.

�

�

	

Belt Theorem
Every frontier lies in a linear belt with rational (or ∞) slope.

406 Petr Jančar et al.

The proof of the Belt Theorem is outlined in Section 4; in the remainder of
this section we describe the decision procedure which is based on this theorem.
For each k = 0, 1, 2, . . . , let G

k
〈p,q〉 : N × N → {black, white} be the maximally-

black collection of colourings of the plane (with 〈p, q〉 ranging over Q1×Q2) which
satisfies the following: whenever m, n ≤ k with Gk

〈p,q〉(m, n) = black, if p(m) a→
p′(m′) then q(n) a→ q′(n′) with Gk

〈p′,q′〉(m
′, n′) = black. Such a maximally-

black collection of colourings exists since the collection of totally-white colourings
satisfies this condition, as does the collection of colourings which colours a point
black exactly when it is black in some collection of colourings satisfying the
above condition; this final collection of colourings is the one we seek, and is
effectively computable (it is black everywhere outside the initial k × k square).
Note that G

k
〈p,q〉(m, n) = white implies G

k+1
〈p,q〉(m, n) = white and that G〈p,q〉 =

limk→∞ Gk
〈p,q〉.

?

m0

n0

n

n

m

m

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

Fig. 1.

We can effectively construct the collections Gk
〈p,q〉 for each k = 1, 2, 3, By

the Belt Theorem, eventually for some k we must be able to lay down over the
graphs G

k
〈p,q〉 a set of linear belts with rational slopes such that (see Fig. 1)

– there is an initial (m × m) square (m < k) inside of which each frontier lies
within some belt (we may assume that parallel belts coincide, so that two
or more frontiers may appear in the same belt);

– outside of some initial (n×n) square (n < m) containing the point 〈m0, n0〉,
the belts are separated by gaps wide enough so that no point has neighbour-
ing points in two belts;

Simulation Problems for One-Counter Machines 407

– within the area bounded by the initial (n× n) and (m×m) squares, looking
at each horizontal level within each belt (or each vertical level, in the case of
a horizontal belt) we find a pattern which repeat itself—along with all of its
neighbouring points—at two different levels. (That is, the colourings of the
points and neighbouring points are the same in every graph on these levels
within the belt.) Furthermore, the shift from one occurrence of the pattern
to the next has a slope equal to that of the belt.

Note that these belts need not a priori be the true frontier belts specified in
the Belt Theorem; but since (by the pigeonhole principle) the true frontier belts
display such a repetitive pattern, the true frontier belts must eventually appear
in the above fashion if no other belts appear earlier on in the construction.

Once we recognise such belts in the graphs G
k
〈p,q〉 (for some k), we can define

graphs G′
〈p,q〉 by continuing the colouring of the graphs Gk

〈p,q〉 by periodically
repeating the colouring within the belts between the levels at which the patterns
repeat, and recolouring points to the right of the belts to maintain the invariant
that white points are rightwards-closed.

We can readily confirm that the set of all pairs 〈p(m), q(n)〉 such that
G
′
〈p,q〉(m, n) is black is a simulation. Thus, all black points are correct (that

is, G〈p,q〉(m, n) is black whenever G′
〈p,q〉(m, n) is black), and all white points

within the initial (n × n) square are correct, proving that we have correctly
constructed the initial (n× n) square.

3 Undecidability for One-Counter Machines

To show undecidability, we use a reduction from the halting problem for Minsky
machines with 2 counters, which is well-known to be undecidable [5]; we can even
suppose the input counter values to be zero. We use the following definition:

A Minsky machine C with two nonnegative counters c1, c2 is a program

1: COMM 1; 2 : COMM 2; · · · ; n : COMM n

where COMM n is a halt-command and COMM i (i = 1, 2, . . . , n− 1) are com-
mands of the following two types (assuming 1 ≤ k, k1, k2 ≤ n, 1 ≤ j ≤ 2)

(1) cj := cj + 1; goto k [action ij]
(2) if cj = 0 then goto k1 [action zj] else (cj := cj − 1; goto k2 [action dj])

Note that the computation of the machine C (starting with COMM 0, the coun-
ters initialized to 0) corresponds to a sequence of actions from {i1, i2, z1, z2,d1,
d2}. This sequence is finite if the computation of C halts and infinite otherwise.

Theorem 1. The problem if p(0) 4 q(0), where p(0) and q(0) are states of
deterministic one-counter machines M1 and M2, is undecidable. (This holds
even in restricted cases, where one of M1 and M2 is fixed.)

408 Petr Jančar et al.

Proof. Given a Minsky machine C with 2 counters c1, c2, we describe the con-
struction of two deterministic one-counter machines M1 and M2, with specified
control states p, q respectively, such that p(0) 4 q(0) iff C does not halt. In
an obvious way, C can be transformed to a deterministic one-counter machine
M1 with n control states (n being the number of commands of C), with the
set of actions {i1, i2, z1, z2,d1,d2}, and such that its counter ‘behaves’ like c1

(actions i1, z1,d1 depend on and change it) while the actions i2, z2,d2 ignore the
counter (c2 is ‘missing’). Thus a computation of M1 can digress from that of C
by performing an action d2 instead of z2 or vice versa. M2 can be constructed
similarly, now with the counter corresponding to c2 while c1 is ignored. More-
over, for each control state of M2 with ‘outgoing arcs’ labelled z2 (enabled when
the counter is zero) and d2 (enabled when the counter is positive) we add new
‘complementary’ arcs labelled z2 (for positive) and d2 (for zero) which lead to a
special control state q∗ which has a loop for any action (ignoring the counter).
Note that M2 remains deterministic. Finally we add a new outgoing arc to the
halting control state of M1, and we obviously have p(0) 4 q(0) iff C does not
halt. ut

Below we briefly describe two modifications of this construction which show
that M1 or M2 can be fixed (not depending on C), even with just one or two
control states respectively. Here δ represents both δ= and δ> (which are thus
equal).

M1 fixed: M1 has only one state, Q1 = {p}, M2 has control states
Q2 = {q1, q2, . . . , qn, q∗}. The common alphabet is Σ = {i1, z1,d1, a2} (we merge
i2, z2,d2 into one symbol a2). The transition function in qi depends on the type
of the i-th command of C. δ1 gives ∅ and δ2 gives {(q∗, 0)} in all cases not
mentioned in the table.

Commands of C Transitions of M1 Transitions of M2

i : c1 := c1 + 1; goto j δ1(p, i1) = {(p, 1)} δ2(qi, i1) = {(qj , 0)}
i : if c1 = 0 then goto j δ=

1 (p,z1) = {(p, 0)} δ2(qi, z1) = {(qj , 0)}
else c1 := c1 − 1; goto k δ>

1 (p,d1) = {(p,−1)} δ2(qi,d1) = {(qk, 0)}
i : c2 := c2 + 1; goto j δ2(qi,a2) = {(qj , 1)}
i : if c2 = 0 then goto j δ1(p,a2) = {(p, 0)} δ=

2 (qi,a2) = {(qj , 0)}
else c2 := c2 − 1; goto k δ>

2 (qi, a2) = {(qk,−1)}
i : halt δ2(qi, α) = ∅ (∀α ∈ Σ)

δ2(q∗, α) = {(q∗, 0)} (∀α ∈ Σ)

M2 fixed: M1 has control states Q1 = {p1, p2, . . . , pn}, M2 has control
states Q2 = {q0, q∗}. The common alphabet is Σ = {a1, i2, z2,d2,h} (we merge
i1, z1,d1 into one symbol a1, and added a new symbol h). δ1 gives ∅ in all cases
not mentioned in the table.

Theorem 2. The problem if p(m) ' q(n), where p(m) and q(n) are states of
two (nondeterministic) one-counter machines, is undecidable.

Simulation Problems for One-Counter Machines 409

Commands of C Transitions of M1 Transitions of M2

i : c1 := c1 + 1; goto j δ1(pi,a1) = {(pj , 1)}
i : if c1 = 0 then goto j δ=

1 (pi,a1) = {(pj , 0)} δ2(q0,a1) = {(q0, 0)}
else c1 := c1 − 1; goto k δ>

1 (pi,a1) = {(pk,−1)}
i : c2 := c2 + 1; goto j δ1(pi, i2) = {(pj , 0)} δ2(q0, i2) = {(q0, 1)}

δ1(pi, z2) = {(pj , 0)} δ=
2 (q0, z2) = {(q0, 0)}

i : if c2 = 0 then goto j δ>
2 (q0, z2) = {(q∗, 0)}

else c2 := c2 − 1; goto k δ1(pi,d2) = {(pk, 0)} δ>
2 (q0,d2) = {(q0,−1)}

δ=
2 (q0, d2) = {(q∗, 0)}

i : halt δ1(pi,h) = {(pi, 0)} δ2(q0,h) = ∅
δ2(q∗, α) = {(q∗, 0)} (∀α ∈ Σ)

Proof. For control states p and q, taken from M1 and M2 respectively, we give a
construction of M ′

1 with r1 and M ′
2 with r2 so that p(0) 4 q(0) iff r1(0) ' r2(0);

recalling the previous theorem we shall be done.
We take M ′

1 to be the disjoint union of M1 and M2, adding a new control
state r1 and putting δ′1(r, a) = {(p, 0), (q, 0)} (a is an arbitrary symbol; here is
the only use of nondeterminism when M1 and M2 are deterministic). M ′

2 arises
from M2 by adding a new control state r2 and putting δ′2(r2, a) = {(q, 0)}.

It is easily seen that r2(0) 4 r1(0), and that r1(0) 4 r2(0) iff p(0) 4 q(0). ut
Remark. Decidability of simulation equivalence for deterministic one-counter
machines follows from decidability of equality for one-counter languages [6].
Undecidability of simulation preorder is slightly stronger than the well-known
fact that inclusion for deterministic context-free languages is undecidable.

4 Proof of the Belt Theorem

By an area we mean a set A ⊆ N × N. We define its interior and border as
follows.

interior(A) =
{
〈m, n〉 : {m− 1, m, m + 1} × {n− 1, n, n + 1} ⊆ A

}
;

border(A) = A− interior(A).

Given an area A and a vector v ∈ Z × Z (where Z denotes the set of integers),
we let shift(A, v) = (A + v) ∩ (N × N) denote the area A shifted by vector v.
We say that the shift of an area A by a vector v is safe wrt B ⊆ shift(A, v)
iff for all graphs G〈p,q〉 and all u ∈ B we have that G〈p,q〉(u) is black whenever
G〈p,q〉(u−v) is black. We say that such a shift is safe iff it is safe wrt shift(A, v),
that is, if it never shifts a black point to a white point.

By a line ` we mean a line with a finite rational slope β > 0; however, we
occasionally refer explicitly to horizontal or vertical lines. We also view a line as
a function, writing `(y) to represent the value x such that the point 〈x, y〉 is on
the line. We often refer to areas determined by a horizontal line at level b ∈ N

and one or two lines. For this, we use the following notation: A[b,−→̀,
←−̀′] denotes

410 Petr Jančar et al.

the set of all points of N×N which lie on or above level b, on or to the right of `,
and on or to the left of `′. We omit b when b = 0. Finally, by a belt we mean the
set of points on or between two parallel lines; here we also allow horizontal and
vertical lines. Thus we may have a horizontal belt, or a vertical belt, or a belt
of the form A[−→̀,

←−̀′] where ` and `′ are parallel lines with `′ to the right of `.
We can partition the frontiers according to whether or not they lie in a

horizontal or a vertical belt. To this end we make the following definitions.

(i) HF is the set of frontiers f such that f(n) =∞ for some n ∈ N. We let
HB ∈ N (the “horizontal bound”) be the least value such that f(HB) =∞
for all f ∈ HF. The frontiers of HF are those which lie in a horizontal
belt.

(ii) VF is the set of frontiers f such that limn→∞ f(n) <∞. We let VB ∈ N

(the “vertical bound”) be the least value such that f(n) < VB for all
f ∈ VF and all n ∈ N. The frontiers of VF are those which lie in a
vertical belt.

(iii) IF is the set of interior frontiers, those not appearing in HF nor in VF.

We now formalize the notion of a line separating frontiers. For this, we need
the following notions. We refer to a (horizontal) shift of a line ` by an amount
i ∈ Z by shift(`, i); this is the line `′ such that `′(y) = `(y)+i. Given β > 0, we let
step(β) ∈ N be the least integral horizontal distance which two lines with slope β
must be separated so as to fit a unit square between them; this ensures that, given
two such lines ` and `′ = shift(`, step(β)) we have A[←−̀] ∩ interior(N × N) ⊆
interior(A[

←−̀′]). Note that step(α) ≤ step(β) whenever α ≥ β.

Definition 1. A line ` with rational slope β > 0 separates frontiers above
level b ∈ N iff:

(i) for all f ∈ HF, f(b) =∞; that is, b ≥ HB;
(ii) for all f , if f(b) = −1 then f(n) = −1 for all n;
(iii) for all f ∈ IF, f(b) > VB;
(iv) for all f , if f(b) ≤ `(b) then f(n) < `(n)− step(β) for all n ≥ b

(in which case we call f an `-left frontier);
(v) for all f , if f(b) ≥ `(b) then f(n) > `(n) + step(β) for all n ≥ b

(in which case we call f an `-right frontier).

Thus the `-left and `-right frontiers are separated by a belt with (horizontal)
width 2 · step(β) centered on the line `. We say simply that a line separates
frontiers if it separates frontiers above some level.

The next Lemma shows that there always exists such a separating line.

Lemma 1. There is a line ` (with rational slope β > 0) which separates fron-
tiers, in which the `-right frontiers are exactly those of HF.

We now outline the proof of our Belt Theorem.

Simulation Problems for One-Counter Machines 411

Proof of The Belt Theorem: Suppose we have a line ` with rational slope β
which separates frontiers above level b in such a way that `-right frontiers lie in
belts and their number cannot be increased by choosing a different `. That such
a separating line exists is ensured by Lemma 1.

Let L be the set of `-left frontiers, and suppose for the sake of contradiction
that L − VF 6= ∅ (otherwise we have nothing to prove).

For any n ≥ b, let gap1(n) be the (horizontal) distance from ` to the right-
most `-left frontier point on level n; that is, gap1(n) = min{`(n)−f(n) : f ∈ L}.
Note that, since β is rational, the fractional part of gap1(n) ranges over a finite
set. Hence we cannot have an infinite sequence of levels i1, i2, i3, . . . above b
such that gap1(i1) > gap1(i2) > gap1(i3) > · · · . We can thus take an infinite
sequence i1 < i2 < i3 < · · · of levels above b such that

1. gap1(i) ≤ gap1(n) for all i ∈ {i1, i2, i3, . . . } and all n ≥ i;
2. either gap1(i1) = gap1(i2) = gap1(i3) = · · ·

or gap1(i1) < gap1(i2) < gap1(i3) < · · · ;
3. for some fixed `-left frontier fmax ∈ L: gap1(i) = `(i) − fmax(i) for all

i ∈ {i1, i2, i3, . . . }.
The above conditions can be satisfied by starting with the infinite sequence
b + 1, b + 2, b + 3, . . . , and first extracting an infinite subsequence which satisfies
the first condition, then extracting from this a further infinite subsequence which
satisfies (also) the second condition, and then extracting from this a further
infinite subsequence which satisfies (also) the third condition.

For i ∈ {i1, i2, i3, . . . }, we let offseti : L → N be defined by offseti(f) =
fmax(i) − f(i). We can then assume that our infinite sequence further satisfies
the following condition.

4. For each f ∈ L: either offseti1(f) = offseti2(f) = offseti3(f) = · · ·
or offseti1(f) < offseti2(f) < offseti3(f) < · · · .

In the first case, we call f a fixed-offset frontier ; and in the second case,
we call f an increasing-offset frontier .

This condition can be satisfied by repeatedly extracting an infinite subsequence
to satisfy the condition for each f ∈ L in turn. Finally, we assume our sequence
satisfies the following condition.

5. We have a maximal number of fixed-offset frontiers; no other sequence satis-
fying conditions 1–4 can have more `-left frontiers f ∈ L with offseti1(f) =
offseti2(f) = · · · .
For technical reasons, we also suppose the next two conditions which can be

satisfied by dropping some number of initial levels (that is, sequence elements).

6. gap2(i1) > |L| · step(β), where gap2(ij) is defined as

min{offsetij (f) : f is an increasing-offset frontier}
− max{offsetij (f) : f is a fixed-offset frontier}

7. fmax(i1) < fmax(i2).

412 Petr Jančar et al.

The line going through the points u1 = 〈fmax(i1), i1〉 and u2 = 〈fmax(i2), i2〉
has some slope α ≥ β. If we let left-of(u2) denote the set of points consisting of
u2 along with all points to its left (that is, all (m, i2) with m ≤ fmax(i2)) then
the shift of left-of(u2) by v = u1 − u2 is safe: for the shift of the point onto
the y-axis, this is assured by condition (ii) of Definition 1; and for the remaining
points, this is assured since frontier offsets cannot shrink (condition 4 above).
We can thus invoke the following.

β

v
i2
i1

b

u2

u1

`2

`

`R
Right Lemma Consider a line ` with slope β sepa-
rating frontiers above level b, and take two points u1 =
〈m1, i1〉 and u2 = 〈m2, i2〉 in A[b,←−̀] with m1 < m2

and b < i1 < i2 such that the slope α of the vector
v = u1 − u2 is at least β. Let `2 be the line parallel
to ` which goes through u2, and suppose that all `-left
frontier points in A[i2] are in A[←−̀2], and that the shift
of left-of(u2) by v is safe. Then there is a line `R with
slope α separating the same frontiers as ` does above
level i2.

This gives us a line `R with slope α separating the same frontiers as ` above i2.
Now, there must then be a line `0 with slope α to the left of ` above level

i1 such that every fixed-offset frontier appears in (that is, intersects with) A =
A[i1,

−→̀
0 ,
←−̀], and such that whenever a frontier f appears in A there is a frontier

point uf = 〈f(n), n〉 ∈ interior(A) such that f(n) − `0(n) ≥ f(i1) − `0(i1);
that is, uf is at least as far to the right of `0 as the frontier point of f on level
i1. (We can first consider `0 to be the line going through the frontier points at
levels i1 and i2 of the fixed-offset frontier with the greatest offset value; if some
frontier f is on the border but not in the interior of A, then we can instead
take `0 to be the shift of this line by − step(α). If there is now some other
frontier which is on the border but not in the interior of A, then we again shift
the line by − step(α). We need only shift (at most) once for each frontier in L
before being guaranteed to arrive at a suitable choice for `0, so we shift by at
most |L| · step(α) ≤ |L| · step(β), and hence by condition 5 we don’t reach the
increasing-offset frontiers on level i1.) We may then invoke the following.

β

uf ′

uf

i1

`

`0`L
Left Lemma Suppose we have a line ` with ratio-
nal slope β separating frontiers above level i1, and a
line `0 with rational slope α ≥ β to the left of ` above
level i1. Suppose further that whenever a frontier f
appears in A = A[i1,

−→̀
0 ,
←−̀], there is a frontier point

uf = 〈f(n), n〉 ∈ interior(A) such that f(n) − `0(n) ≥
f(i1) − `0(= i1). Then there is a line `L to the left of
`0 with slope α such that f ⊆ A[

−→̀
L] for each such fron-

tier f .
The premise of this is thus satisfied, so all frontiers with frontier points

in A are in A[
−→̀

L] for some line `L with slope α. Hence they are in the belt

Simulation Problems for One-Counter Machines 413

A[
−→̀

L ,
←−
`R] above i2; and in fact only the fixed-offset frontiers can (and do) have

frontier points in A = A[i1,
−→̀

0 ,
←−̀], for otherwise they would not correspond to

increasing-offset frontiers.
It remains to demonstrate that we can choose `L so that it separates frontiers.

This can only fail if an increasing-offset frontier appears infinitely often in A[
−→̀′]

where `′ = shift(`L,−2 · step(α)). But then there would be two levels ij1 and
ij2 where fmax(ij1)− `L(ij1) = fmax(ij2)− `L(ij2) = d and gap2(ij1) > d + |L| ·
step(α). We could then find a contradiction using Left Lemma, by considering
now the area A[ij1 ,

−→̀
L ,
←−
`R]. ut

References

1. Abdulla, P., K. Čerāns (1998). Simulation is decidable for one-counter nets
(Extended Abstract.) In Proceedings of CONCUR’98, Lecture Notes in Computer
Science 1466:253–268. 405

2. Jančar, P. (1997). Decidability of bisimilarity for one-counter processes. In Pro-
ceedings of ICALP’97, Lecture Notes in Computer Science 1256:549–559. (Revised
version to appear in The Journal of Information and Computation.) 405

3. Jančar, P., F. Moller (1999). Simulation on one-counter nets via
colouring. Uppsala Univ. CSD Report No. 159, February 1999.
http://www.csd.uu.se/papers/reports.html 405

4. Moller, F. (1996). Infinite results. Proceedings of CONCUR’96, Lecture Notes in
Computer Science 1119:195–216. 405

5. Minsky, M. (1967). Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, NJ. 407

6. Valiant, L.G., M.S. Paterson (1975). Deterministic one-counter automata. Journal
of Computer and System Science 10:340–350. 409

	Introduction
	Decidability for Weak One-Counter Machines
	Undecidability for One-Counter Machines
	Proof of the Belt Theorem

