
Formal Methods for First Years

Faron Moller Liam O’Reilly

Department of Computer Science
Swansea University

{F.G.Moller|L.P.OReilly}@swansea.ac.uk

13 April 2013

Abstract

In this report, we describe the underlying concept and contents of a new textbook“Modelling
Computing Systems: The Mathematics of Computer Science.”This book will be published by
Springer in Autumn 2013, and is aimed at first-year university computer science students as a
novel approach to introducing them in an engaging way to formal methods at the very start of
their education. In fact, the approach to formal modelling based on labelled transition systems
promoted by the book has been successfully adapted to workshops delivered by Technocamps,
a schools outreach programme aimed at secondary school pupils.

1 Why a New Book on Formal Methods

Computer Science is a relatively young discipline. University Computer Science Departments are
rarely more than a few decades old. They will typically have emerged either from a Mathematics
Department or an Engineering Department, and until recently a Computer Science degree was pre-
dominantly about writing computer programs (the mathematical software) and building computers
(the engineering hardware). Textbooks typically referredto programming as an “art” or a “craft”
with little scientific basis compared to traditional engineering subjects, and many computer pro-
grammers still like to see themselves as part of a pop cultureof geeks and hackers rather than as
academically-trained professionals.

However, the nature of Computer Science is changing rapidly, reflecting the increasing ubiquity
and importance of its subject matter. In the last decades, computational methods and tools have
revolutionised the sciences, engineering and technology.Computational concepts and techniques
are starting to influence the way we think, reason and tackle problems; and computing systems
have become an integral part of our professional, economic and social lives. The more we depend
on these systems – particularly for safety-critical or economically-critical applications – the more

1

we must ensure that they are safe, reliable and well designed, and the less forgiving we can be of
failures, delays or inconveniences caused by the notorious“computer glitch.”

Unlike traditional engineering disciplines which are solidly rooted on centuries-old mathematical
theories, the mathematical foundations underlying Computer Science are younger, and Computer
Scientists have yet to agree on how best to approach the fundamental concepts and tasks in the
design of computing systems. The Civil Engineer knows exactly how to define and analyse a math-
ematical model of the components of a bridge design so that itcan be relied on not to fall down,
and the Aeronautical Engineer knows exactly how to define andanalyse a mathematical model
of an aeroplane wing for the same purpose. However, SoftwareEngineers have few universally-
accepted mathematical modelling tools at their disposal. In the words of the eminent Computer
Scientist Alan Kay, “most undergraduate degrees in computer science these days are basically Java
vocational training.” But computing systems can be at leastas complex as bridges or aeroplanes,
and a canon of mathematical methods for modelling computingsystems is therefore very much
needed. “Software’s Chronic Crisis” was the title of a popular and widely-cited Scientific Ameri-
can article from 1994, and, unfortunately, its message remains valid two decades later.

University Computer Science Departments face a sociological challenge posed by the fact that
computers have become everyday, deceptively easy-to-use objects. A single generation ago, new
Computer Science students typically had teenage backgrounds spent writing Basic and/or Assem-
bly Language programs for their early hobbyist computers. Apassion for this activity is what drove
these students into University Computer Science programmes, and they were not disappointed with
the education they received. Their modern-day successors on the other hand – born directly into
the heart of the computer era – have grown up with the internet, a billion dollar computer games
industry, and mobile phones with more computing power than the space shuttle. They often choose
to study Computer Science on the basis of having a passion forusing computing devices through-
out their everyday lives, for everything from socialising with their friends to downloading the latest
films, and they often have less regard than they might to the considerations of what a University
Computer Science programme entails, that it is far more thanjust using computers.

There is a universal trend of large numbers of first-year students transferring out of Computer
Science programmes and into related programmes such as Media Studies or Information Studies.
This trend, we feel, is often unjustified, and can be reversedby a more considered approach to
modelling and the mathematical foundations of system design, one which the students can connect
and feel at home with right from the beginning of their University education. This was the motiva-
tion behind producing a modern textbook, to be published by Springer in Autumn 2013, aimed at
teaching first-year undergraduate students the essential mathematics and modelling techniques for
computing systems in a novel and relatively light-weight way.

The book is divided into two parts. Part I, subtitledMathematics for Computer Science, introduces
concepts from Discrete Mathematics which are in the curriculum of any University Computer
Science programme, as well as much which often is not. This material is typically taught in
service modules by mathematicians, and new Computer Science students often find it difficult to
connect with the material presented in a purely mathematical context. In this book, this material is
presented in an engaging and motivating fashion as the basisof computational thinking.

2

Part II of the book, subtitledModelling Computing Systems, develops a particular approach to mod-
elling based on state transition systems. Such transition systems have always featured in the Com-
puter Science curriculum, but traditionally (and increasingly historically) only within the study
of formal languages. Here they are introduced as general modelling devices, and languages and
techniques are explored for expressing and reasoning aboutsystem specifications and (concurrent)
implementations. Although Part I covers twice as many pagesas Part II, much of the Mathematics
presented in Part I itself is used directly for modelling systems, and forms the basis on which the
approach developed in Part II is based.

The main benefit of mathematical formalisation is that systems can be modelled and analysed
in precise and unambiguous ways; but formal precision can also be a major pitfall in modelling
since it can compromise simplicity and intuition. In this book, therefore, the starting point is
intuition and examples, and precise concepts are developedfrom that basis. How and when to be
precise is certainly not less important to learn than precision itself: the ability to give mathematical
proofs often does not depend on knowing precise formal definitions and foundations. One can, for
example, write down recursive functions without having a precise formal concept in mind.

There is a long standing tradition in disciplines like Physics to teach modelling through little ar-
tifacts. The fundamental ideas of computational modellingand thinking as well can better be
learned from idealised examples and exercises than from many real world computer applications.
This book builds on a large collection of logical puzzles andmathematical games that require no
prior knowledge about computers and computing systems; these can be much more fun and some-
times much more challenging than analysing a device driver or a criminal record database. Also,
computational modelling and thinking is about much more than just computers!

In fact, games play a far more important role in the book: theyprovide a novel approach to under-
standing computer software and systems which is proving to be very successful both in theory and
practice. When a computer runs a program, for example, it is in a sense playing a game against
the user who is providing the input to the program. The program represents a strategy which the
computer is using in this game, and the computer wins the gameif it correctly computes the result.
In this game, the user is the adversary of the computer and is naturally trying to confound the
computer, which itself is attempting to defend its claim that it is computing correctly, that is, that
the program it is running is a winning strategy. (In SoftwareEngineering, this game appears in the
guise oftesting.) Similarly, the controller of a software system that interacts with its environment
plays a game against the environment: the controller tries to maintain the system’s correctness
properties, while the environment tries to confound them.

This view suggests an approach to addressing three basic problems in the design of computing
systems:

1. Specificationrefers to the problem of precisely identifying the task to besolved, as well as
what exactly constitutes a solution. This problem corresponds to the problem of defining a
winning strategy.

2. Implementationor Synthesisrefers to the problem of devising a solution to the task which
respects the specification. This problem corresponds to theproblem of implementing a win-

3

ning strategy.

3. Verification refers to the problem of demonstrating that the devised solution does indeed
respect the specification. This problem corresponds to the problem of proving that a given
strategy is in fact a winning strategy.

This analogy between the fundamental concepts in Software Engineering on the one hand, and
games and strategies on the other, provides a mode of computational thinking which comes natu-
rally to the human mind, and can be readily exploited to explain and understand Software Engi-
neering concepts and their applications. It also motivatesthe thesis that Game Theory provides a
paradigm for understanding the nature of computation.

There are over 200 exercises presented throughout the book,all of which have complete solutions
at the back of the book; as well as over 200 further exercises at the ends of the chapters whose
solutions are not provided. The exercises within the chapters are often used to explore subtleties
or side-issues, or simply to put lengthy arguments into an appendix. The material in this book has
been used successfully for over a decade in first-year Discrete Mathematics and Systems Mod-
elling modules. Countless eyes have passed over the text, and a thousand students have solved its
exercises.

2 Labelled Transition Systems for Problem Solving

Consider the following presentation of Euclid’s algorithmfor computing the greatest common
divisor of two numbersx andy:

forever do
x:=x mod y;
if x=0 then return y;
y:=y mod x;
if y=0 then return x

od

To understand this program, you can hand-turn it, keeping track of the state of the variables:

x=72

y=174

x=246

y=174

x=12

y=30

x=72

y=30

x=0

y=6

x=12

y=6

x:=x mod y x:=x mod y x:=x mod y

y:=y mod x y:=y mod x

4

In general, a computation – or more generally a process – can be represented by a Labelled Tran-
sition System (LTS), which consists of a directed graph, where the vertices represent states, and
the edges represent transitions from state to state, and arelabelled by events. As shown above, an
LTS is typically presented pictorially, with the states represented by circles and the transitions by
arrows between states labelled by actions.

As a further example, consider the following lamp process:

OFF ON

BROKEN

pull

pull

pull

reset break

The lamp has a string to pull for turning the light on and off, and a reset button which resets the
circuit if a built-in circuit breaker breaks when the light is on.

At any moment in time the lamp can be in one of three states:

• OFF – in which the light is off (and the circuit breaker is set);

• ON – in which the light is on (and the circuit breaker is set); and

• BROKEN – in which the circuit breaker is broken (and the light is off).

In any state the string can be pulled, causing a transition into the appropriate new state (from the
state BROKEN, the new state is the same state BROKEN). In the state ON, the circuit breaker may
break, causing a transition into the state BROKEN in which the reset button has popped out; from
this state, the reset button may be pushed, causing a transition into the state OFF.

These simple examples demonstrate the simple, but effective, use of LTSs as a means of modelling
computing problems and real world objects. Of course, LTSs are not limited to such primitive
forms. They can be extended in a variety of ways to add furtherinformation, for example, notions
of time and space can be represented within states so that real-time and hybrid systems can be
described. In this respect, LTSs can be regarded as a generalformalism for modelling any kind
of system, be it a computing system, a real world object, or a concurrent real-time system with
multiple components.

Introducing LTSs with Puzzles

Whilst the definition of a labelled transition system is surprisingly straightforward for such a pow-
erful formalism, getting students to engage with it requires some ingenuity. Fortunately, this is
equally straightforward by resorting to well-known recreational puzzles.

5

The Man-Wolf-Goat-Cabbage Riddle

A man needs to cross a river with a wolf, a goat and a cabbage. His boat is only large
enough to carry himself and one of his three possessions, so he must transport these
items one at a time. However, if he leaves the wolf and the goattogether unattended,
then the wolf will eat the goat; similarly, if he leaves the goat and the cabbage together
unattended, then the goat will eat the cabbage. How can the man get across safely with
his three items?

This riddle was posed by Alcuin of York in the 8th century, andmore recently tackled by Homer
Simpson in a 2009 episode of The Simpsons titled Gone Maggie Gone.

This puzzle can be solved by modelling it as an LTS. A state of the LTS will represent the current
position (left or right bank) of the four entities (man, wolf, goat, cabbage); and there will be four
actions representing the four possible actions that the mancan take:

• m = the man crosses the river on his own;

• w = the man crosses the river with the wolf;

• g = the man crosses the river with the goat; and

• c = the man crosses the river with the cabbage.

WGC : M

MWGC :
mm

WC : MG

gg

GC : MW

w

w

WG : MC

c

c

MWC : G

mm

C : MWG
w

w

W : MCG

c

c

MGC : W

gg

MWG : C

gg

G : MWC

c

c w

w

MG : WC

mm

: MWGC

gg

M : WGC

mm

MC : WG

c

c

MW : GC

w

w

m

m

m

m
m

m m

m

6

The initial state is
�

�

�

�MWGC : (meaning all are on the left bank of the river).

We wish to find a sequence of actions which will lead to the state
�

�

�

�: MWGC (meaning all are on
the right bank of the river).

However, we want to avoid going through any of the six dangerous states:
�

�

�

�WGC : M
�

�

�

�GC : MW
�

�

�

�WG : MC
�

�

�

�MC : WG
�

�

�

�MW : GC
�

�

�

�M : WGC

There are several possibilities (all involving at least 7 crossings), for example

g, m, w, g, c, m, g.

The Missionaries and Cannibals Riddle

Three missionaries are travelling with three cannibals when they come upon a river.
They have a boat, but it can only hold two people. The river is filled with piranha,
so they all must eventually cross in the boat; no one can crossthe river by swimming.
The problem is: should the cannibals ever outnumber the missionaries on either side
of the river, the outnumbered missionaries would be in deep trouble. Each missionary
and each cannibal can row the boat. How can all six get across the river safely?

Similarly to the Man-Wolf-Goat-Cabbage riddle, this puzzle can also be solved using an LTS, as
depicted in Figure 1. Each state of the LTS records the positions of the people (which banks they
are on) and which side holds the boat. The groups on the two banks are depicted side-by-side
divided by wiggly lines representing the river, with the group holding the boat enclosed in paren-
theses. We only consider the safe states where the cannibalsdo not outnumber the missionaries.

There are five possible actions:

• m (a missionary crosses alone);

• mm (two missionaries cross together);

• c (a cannibal crosses alone);

• cc (two cannibals cross together); and

• mc (a missionary and a cannibal cross together).

Notice that all of the transitions are drawn bi-directionally, as every transition can clearly be re-
versed.

The group start in the top-left state in which the whole groupis on the left bank, and they wish to
get to the bottom-right state in which they are all on the right bank. It is not hard to find a such
path through the LTS which involves11 crossings.

7

(

mmm

c c c

)

≀≀≀ ·

·

(

mmm

c c

)

≀≀≀ ·

c

(

mmm

c

)

≀≀≀ ·

cc

(

mm

c c

)

≀≀≀ m

c

(

m

c

)

≀≀≀ mm

c c

(

·

ccc

)

≀≀≀ mmm

·

(

·

cc

)

≀≀≀ mmm

c

(

·

c

)

≀≀≀ mmm

c c

mmm

c c
≀≀≀
(

·

c

)

mmm

c
≀≀≀
(

·

cc

)

mmm

·
≀≀≀
(

·

ccc

)

mm

c c
≀≀≀
(

m

c

)

m

c
≀≀≀
(

mm

c c

)

·

cc
≀≀≀
(

mmm

c

)

·

c
≀≀≀
(

mmm

c c

)

·

·
≀≀≀
(

mmm

c c c

)

c

cc

mc

c

cc

m

c

mm

mc

mm

m

mc

c

cc

c

cc

c

Figure 1: The Missionaries and Cannibals riddle as an LTS.

The Water Jugs Riddle

In the 1995 film Die Hard: With a Vengeance, New York DetectiveJohn McClane (played by
Bruce Willis) and Harlem dry cleaner Zeus Carver (played by Samuel L. Jackson) had to solve the
following problem in order to prevent a bomb from exploding at a public fountain.

Given only a five-gallon jug and a three-gallon jug, neither with any markings on them,
they had to fill the larger jug withexactlyfour gallons of water from the fountain, and
place it onto a scale in order to stop the bomb’s timer and prevent disaster.

How did they manage this feat?

8

This riddle was posed by Abbot Albert in the 13th Century.

A state of the system underlying this riddle consists of a pair of integers(i, j) with 0≤i≤5 and
0≤j≤3, representing the volume of water in the 5-gallon and 3-gallon jugsA andB, respectively.
The initial state is(0, 0) and the final state you wish to reach is(4, 0).

There are six moves possible from a given state(i, j):

(i,j)
fillA
−→ (5, j)

(

if i=0

)

(i,j)
fillB
−→ (i, 3)

(

if j=0

)

(i,j)
emptyA
−→ (0, j)

(

if i>0

)

(i,j)
emptyB
−→ (i, 0)

(

if j>0

)

(i,j)
AtoB
−→

(

max(0, i+j−3),min(3, i+j)

) (

if i>0 andj<3

)

(i,j)
BtoA
−→

(

min(5, i+j),max(0, i+j−5)

) (

if i<5 andj>0

)

Drawing out the LTS, we get the following7-step solution:

(0, 0)
fillA
−→ (5, 0)

AtoB
−→ (2, 3)

emptyB
−→ (2, 0)

AtoB
−→ (0, 2)

fillA
−→ (5, 2)

AtoB
−→ (4, 3)

emptyB
−→ (4, 0).

These simple riddles and puzzles allow students to easily grasp and understand the powerful con-
cept of labelled transition systems. After seeing only a fewexamples, they are able to model
straightforward systems by themselves using LTSs. Once an intuitive understanding has been es-
tablished, the task of understanding the mathematics behind LTSs becomes less foreboding.

3 Bisimulation for Dummies

Beyond having a formalism for representing and simulating (the behaviour of) a system, we want
to be able to determine if the system is correct. In its most basic form, this amounts to determining
if the system matches its specification, where we assume thatboth the system and its specification
are given as states of some LTS. For example, consider the twomodels of a vending machineV1

andV2 depicted in Figure 2, whereV1 is taken to represent the specification of the vending machine
while V2 is taken to represent its implementation.

Clearly the behaviour ofV1 is somehow different from the behaviour ofV2: after twice inserting
a 10p coin intoV1, we areguaranteedto beable to press the coffee button; this isnot true ofV2.
The question is:How do we formally distinguish between processes?

9

coffee tea

10p

collect

V1

10p
10p coffee

tea
collect

V2

10p 10p

10p

coffee

tea

collect

Figure 2: Two Vending Machine models

The formal definition of bisimilarity

A traditional approach to this question relies on determining if these two states are related by a
bisimulation relationR as defined as follows.

A binary relationR over states of an LTS is a bisimulation relation if, and only if,
whenever(x, y) ∈ R:

• if x
a

→ x′ for somex′ anda, theny
a

→ y′ for somey′ such that(x′, y′) ∈ R; and

• if y
a

→ y′ for somey′ anda, thenx
a

→ x′ for somex′ such that(x′, y′) ∈ R.

Simple inductive definitions already represent a major challenge for undergraduate university stu-
dents; so it is no surprise that this coinductive definition of a bisimulation relation is incomprehen-
sible even to some of the brightest postgraduate students – at least on their first encounter with it.
However, there is a straightforward way to explain the idea of bisimilarity to first-year students – a
way which they can readily grasp and are happy to explore and,indeed, play with. The approach
is based on the following game.

The Copy-Cat Game

This game is played between two players, typically referredto as Alice and Bob. We start by
placing tokens on two states of an LTS, and then proceed as follows.

1. The first player (Alice) chooses one of the two tokens, and moves it forward along an arrow
to another state; if this is impossible (that is, if there areno arrows leading out of either node
on which the tokens sit), then the second player (Bob) is declared to be the winner.

2. The second player (Bob) must move theother token forward along an arrow which hasthe
same labelas the arrow used by the first player; if this is impossible, then the first player
(Alice) is declared to be the winner.

10

This exchange of moves is repeated for as long as neither player gets stuck. Note that Alice gets to
choose which token to moveevery time it is her turn; she does not have to keep moving the same
token. If Bob ever gets stuck – ie, cannot copy a move made by Alice – then Alice is declared to be
the winner; otherwise Bob is declared to be the winner (in particular, if the game goes on forever).

Alice, therefore, wants to show that the two states holding tokens are somehow different, in that
there is something that can happen from one of the two states which cannot happen from the other.
Bob, on the other hand, wants to show that the two states are the same: that whatever might happen
from one of the two states can be copied by the other state.

It is easy to argue that two states should be considered equivalent exactly when Bob has a winning
strategy in the Copy-Cat Game starting with the tokens on thetwo states in question; and indeed
this is taken to be the definition of when two states are equal,specifically, when an implementation
matches its specification.

As an example, consider playing the game on the following LTS.

U Z Y X

V

W
a

a

c

b c

b

a

Starting with tokens on statesU andX, thefirst player (Alice) has a winning strategy:

• Alice can move the token onU along thea-transition toV .

• Bob must match this by moving the token onX along thea-transition toY .

• Alice can then move the token onY along thec-transition toZ.

• Bob will be stuck, as there is noc-transition fromV .

This example is a simplified version of the vending machine example; and a straightforward adap-
tation of the winning strategy for Alice will work in the gamestarting with the tokens on the states
V1 andV2. We thus have an argument as to why the two vending machines are different.

Relating winning strategies to bisimilarity

Whilst this notion of equality between states is particularly simple and even entertaining to explore,
it coincides precisely with the complicated coinductive definition of when two states are bisimilar.
Furthermore, seeing this is the case is almost equally straightforward.

• Suppose we play the Copy-Cat Game starting with the tokens ontwo statesE andF which
are related by some bisimulation relationR. It is easy to see that Bob has a winning strategy:

11

whatever move Alice makes, by the definition of a bisimulation relation, Bob will be able to
copy this move in such a way that the two tokens will end up on statesE ′ andF ′ which are
again related byR; and Bob can keep repeating this for as long as the game lasts,meaning
that he wins the game.

• Suppose now thatR is the set of pairs of states of an LTS from which Bob has a winning
strategy in the Copy-Cat Game. It is easy to see that this is a bisimulation relation: suppose
that(x, y) ∈ R:

– if x
a

→ x′ for somex′ anda, then taking this to be a move by Alice in the Copy-Cat
Game, we lety

a

→ y′ be a response by Bob using his winning strategy; this would
mean that Bob still has a winning strategy from the resultingpair of states, that is
(x′, y′) ∈ R;

– if y
a

→ y′ for somey′ anda, then taking this to be a move by Alice in the Copy-Cat
Game, we letx

a

→ x′ be a response by Bob using his winning strategy; this would
mean that Bob still has a winning strategy from the resultingpair of states, that is
(x′, y′) ∈ R.

We have thus taken a concept which baffles postgraduate research students, and presented it in a
way which is well within the grasp of first-year undergraduate students.

Determining who has the winning strategy

Once the notion of equivalence is understood in terms of winning strategies in the Copy-Cat Game,
the question then arises as to how to determine if two particular states are equivalent, ie, if Bob has
a winning strategy starting with the tokens on the two given states. This isn’t generally a simple
prospect; Games like Chess and Go are notoriously difficult to play perfectly, as you can only look
ahead a few moves before getting caught up in the vast number of positions into which the game
may evolve.

Here again, though, we have a straightforward way to determine when two states are equivalent.
Suppose we could paint the states of an LTS in such a way that any two states which are equivalent
– that is, from which Bob has a winning strategy – are painted the same colour. The following
property would then hold.

If any state with some colourC has a transition leading out of it into a state with
some colourC ′, theneverystate with colourC has an identically-labelled transition
leading out of it into a state colouredC ′.

That is, if two tokens are on like-coloured states (meaning that Bob has a winning strategy) then
no matter what move Alice makes, Bob can respond in such a way as to keep the tokens on like-
coloured states (ie, a position from which he still has a winning strategy). We refer to such a special
colouring of the states agame colouring.

To demonstrate, consider the following LTS.

12

a

a

a

a

a a

a a

b a

a a
a

a
1 2

3

4

5 6

At the moment all states are coloured white, and we might consider whether this is a valid game
colouring. It becomes readily apparent that it is not, as thewhite state4 can make ab-transition to
the white state5 whereas none of the other white states (1, 2, 3, 5 and6) can do likewise. In fact,
in any game colouring, the state4 must have a different colour from1, 2, 3, 5 and6. Hence we
paint it a different colour from white; in order to present this example in black-and-white, we shall
paint the state4 with the colour “checkered.”

a

a

a

a

a a

a a

b a

a a
a

a
1 2

3

4

5 6

We again consider whether this is now a valid game colouring.Again it becomes apparent that it
is not, as the white states3 and6 havea-transitions to a checkered state, whereas none of the other
white states1, 2 and5 do. And in any game colouring, the states3 and6 must have a different
colour from1, 2 and5. Hence we paint these a different colour from white and checkered; we shall
choose the colour “swirly.”

a

a

a

a

a a

a a

b a

a a
a

a
1 2

3

4

5 6

13

We again consider whether this is now a valid game colouring.This time we find that it is, as every
state can do exactly the same thing as every other state of thesame colour:

• every white state has ana-transition to a white state and ana-transition to a swirly state;

• every swirly state has ana-transition to a swirly state and ana-transition to a checkered state;

• every checkered state has ab-transition to a white state.

At this point we have a complete understanding of the game, and can say with certainty which
states are equivalent to each other. This is an exercise which first-year students can happily carry
out on arbitrarily-complicated LTSs, which again gives testament to the effectiveness of using
games to great success in imparting difficult theoretical concepts to first-year students – in this
case the concept of partition refinement.

4 Conclusion

Students can quickly and easily understand the modelling ofcomputing systems if it is done in a
suitable way. Starting with some formal semantics and real world examples, in our experience,
makes the task very daunting, difficult and generally unpleasant for students. However, appealing
to their existing understanding of how the world works, using puzzles as a medium, students can
quickly become comfortable using mathematical concepts such as LTSs. A similar lesson is learnt
when it comes to teaching verification: starting with the formal definition of bisimulation (or
similar) is an uphill battle from the start, whereas starting from games like the Copy-Cat Game,
life is much easier for everyone.

We have used these approaches for over a decade to successfully teach the modelling and verifica-
tion of computing systems to first-year students of our undergraduate course. This has eventually
lead to the production of our new modern textbook, to be published by Springer in Autumn 2013,
aimed at teaching first-year undergraduate students the essential mathematics and modelling tech-
niques for computing systems in a novel and relatively light-weight way.

14

Appendix

Modelling Computing Systems: The Mathematics of Computer Science

Table of Contents

0 Introduction 1

0.1Examples of System Failures .. 2

0.1.1Clayton Tunnel Accident 2

0.1.2USS Scorpion 4

0.1.3Therac 25 Radiotherapy Machine 4

0.1.4London Ambulance Service 5

0.1.5Intel Pentium6

0.1.6Ariane 5 7

0.1.7Needham-Schroeder Protocol 7

0.2System, Model, Abstraction and Notation 9

0.3Specification, Implementation and Verification 13

Mathematics for Computer Science 15

1 Propositional Logic 17

1.1Propositions and Deductions .. 18

1.2The Language of Propositional Logic .. 21

1.2.1Propositional Variables22

1.2.2Negation 22

1.2.3Disjunction 23

1.2.4Conjunction25

1.2.5Implication 25

1.2.6Equivalence27

1.2.7The Syntax of Propositional Logic 27

1.2.8Parentheses and Precedences 28

1.2.9Syntax Trees 30

1.3Modelling with Propositional Logic .. 32

1.4Ambiguities of Natural Languages .. 35

1.5Truth Tables .. 40

1.6Equivalences and Valid Arguments .. 45

1.7Algebraic Laws for Logical Equivalences 47

15

1.8Additional Exercises .. .50

2 Sets 57

2.1Set Notation .. 57

2.2Membership, Equality and Inclusion .. 59

2.3Sets and Properties .. 63

2.3.1Russell’s Paradox64

2.4Operations on Sets .. 65

2.4.1Union 65

2.4.2Intersection 66

2.4.3Difference 67

2.4.4Complement 68

2.4.5Powerset 69

2.4.6Generalised Union and Intersection72

2.5Ordered Pairs and Cartesian Products73

2.6Modelling with Sets .. 76

2.7Algebraic Laws for Set Identities .. 79

2.8Logical Equivalences versus Set Identities 81

2.9Additional Exercises .. .83

3 Boolean Algebras and Circuits 87

3.1Boolean Algebras .. 87

3.2Deriving Identities in Boolean Algebras 90

3.3The Duality Principle .. 93

3.4Logic Gates and Digital Circuits .. 95

3.5Making Computers Add 100

3.5.1Binary Numbers100

3.5.2Adding Binary Numbers 102

3.5.3Building Half Adders 103

3.5.4Building Full Adders 104

3.5.5Putting It All Together 105

3.6Additional Exercises .. 106

4 Predicate Logic 109

4.1Predicates and Free Variables .. .109

4.2Quantifiers and Bound Variables .. 111

4.2.1Universal Quantification 113

16

4.2.2Existential Quantification 115

4.2.3Bounded Quantifications 118

4.3Rules for Quantification .. 120

4.4Modelling in Predicate Logic .. 124

4.5Additional Exercises .. 127

5 Proof Strategies 131

5.1A First Example .. 132

5.2Proof Strategies for Implication .. .134

5.3Proof Strategies for Negation .. 138

5.4Proof Strategies for Conjunction and Equivalence 142

5.5Proof Strategies for Disjunction .. .144

5.6Proof Strategies for Quantifiers .. 147

5.6.1Universal Quantification 147

5.6.2Existential Quantification 149

5.6.3Uniqueness 152

5.7Additional Exercises .. 153

6 Functions 155

6.1Basic Definitions .. 155

6.2One-To-One and Onto Functions160

6.3Composing Functions .. 163

6.4Comparing the Sizes of Sets .. 166

6.5The Knaster-Tarski Theorem .. 173

6.6Additional Exercises .. 176

7 Relations 179

7.1Basic Definitions .. 179

7.2Binary Relations .. 181

7.2.1Functions as Binary Relations 185

7.3Operations on Binary Relations .. 186

7.3.1Boolean Operations186

7.3.2Inverting Relations 187

7.3.3Composing Relations 188

7.3.4The Domain and Range of a Relation 189

7.4Properties of Binary Relations .. 190

7.4.1Reflexive and Irreflexive Relations 190

17

7.4.2Symmetric and Antisymmetric Relations 191

7.4.3Transitive Relations 191

7.4.4Orderings Relations 192

7.4.5Equivalence Relations 193

7.4.6Equivalence Classes and Partitions 195

7.5Additional Exercises .. 197

8 Inductive and Recursive Definitions 201

8.1Inductively-Defined Sets .. 201

8.2Inductively-Defined Syntactic Sets .. 205

8.3Backus-Naur Form .. 207

8.4Inductively-Defined Data Types .. 210

8.5Inductively-Defined Functions .. 212

8.6Recursive Functions .. 216

8.7Recursive Procedures .. 218

8.8Additional Exercises .. 220

9 Proofs by Induction 223

9.1Convincing but Inconclusive Evidence 223

9.2A Primary School Induction Argument 227

9.3The Induction Argument .. 228

9.4Strong Induction .. 234

9.5Induction Proofs from Inductive Definitions235

9.6Fun with Fibonacci Numbers 237

9.6.1A Fibonacci Number Test 237

9.6.2A Carrollean Paradox 239

9.6.3Fibonacci Decompositions 240

9.7When Inductions Go Wrong241

9.8Examples of Induction in Computer Science 244

9.9Additional Exercises .. 246

10 Games and Strategies 251

10.1Strategies for Games-of-No-Chance .. .252

10.2Nim .. 260

10.3Fibonacci Nim .. 262

10.4Chomp .. 264

10.5Hex .. 266

18

10.6Bridg-It .. 269

10.7Additional Exercises .. 271

Modelling Computing Systems 277

11 Modelling Processes 279

11.1Labelled Transition Systems .. .281

11.2Computations and Processes .. 287

11.3A Language for Describing Processes 292

11.3.1The Nil Process0 . 292

11.3.2Action Prefix 293

11.3.3Process Definitions 294

11.3.4Choice 295

11.4Distinguishing Between Behaviours .. .299

11.5Equality Between Processes .. 302

11.6Additional Exercises .. 303

12 Distinguishing Between Processes 309

12.1The Bisimulation Game309

12.2Properties of Game Equivalence .. 313

12.3Bisimulation Relations .. .315

12.4Bisimulation Colourings .. 318

12.5The Bisimulation Game Revisited: To Infinity and Beyond! 322

12.5.1Ordinal Numbers 323

12.5.2Ordinal Bisimulation Games 324

12.6Additional Exercises .. 328

13 Logical Properties of Processes 333

13.1The Mays and Musts of Processes 334

13.2A Modal Logic for Properties 336

13.3Negation Is Definable .. .341

13.4The Vending Machines Revisited 344

13.5Modal Properties and Bisimulation .. .346

13.6Characteristic Formulæ .. 350

13.7Global Semantics .. 352

13.8Additional Exercises .. 353

14 Concurrent Processes 357

19

14.1Synchronisation Merge .. 357

14.2Counters .. 360

14.3Railway Level Crossing .. .362

14.4Mutual Exclusion .. 365

14.4.1Dining Philosophers 365

14.4.2Peterson’s Algorithm 368

14.5A Message Delivery System371

14.6Alternating Bit Protocol .. 373

14.7Additional Exercises .. 377

15 Temporal Properties 381

15.1Three Standard Temporal Operators .. 382

15.1.1Always: �P 382

15.1.2Possibly: ♦P 383

15.1.3Until: P UQ 384

15.2Recursive Properties .. .385

15.2.1Solving Recursive Equations 387

15.2.2Fixed Point Solutions 388

15.3The Modal Mu-Calculus 390

15.4Least versus Greatest Fixed Points .. 392

15.4.1Approximating Fixed Points 393

15.5Expressing Standard Temporal Operators 397

15.5.1Always: �P 398

15.5.2Possibly: ♦P 398

15.5.3Until: P UQ 398

15.6Further Fixed Point Properties .. 399

15.7Additional Exercises .. 401

Solutions to Exercises 405

Index 493

20

