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Abstract

In this report, we describe the underlying concept and castef a new textbookModelling
Computing Systems: The Mathematics of Computer Sciefbés’book will be published by
Springer in Autumn 2013, and is aimed at first-year univemsitmputer science students as a
novel approach to introducing them in an engaging way to &mmethods at the very start of
their education. In fact, the approach to formal modelliagddl on labelled transition systems
promoted by the book has been successfully adapted to wapkstelivered by Technocamps,
a schools outreach programme aimed at secondary schods.pupi

1 Why a New Book on Formal Methods

Computer Science is a relatively young discipline. Uniitgr&omputer Science Departments are
rarely more than a few decades old. They will typically hareeeged either from a Mathematics
Department or an Engineering Department, and until regan@omputer Science degree was pre-
dominantly about writing computer programs (the mathecaatioftware) and building computers
(the engineering hardware). Textbooks typically refet@@drogramming as an “art” or a “craft”
with little scientific basis compared to traditional enggrniag subjects, and many computer pro-
grammers still like to see themselves as part of a pop cuttigeeks and hackers rather than as
academically-trained professionals.

However, the nature of Computer Science is changing rapiefiecting the increasing ubiquity
and importance of its subject matter. In the last decadespuatational methods and tools have
revolutionised the sciences, engineering and technolégyputational concepts and techniques
are starting to influence the way we think, reason and taakdblpms; and computing systems
have become an integral part of our professional, econondsacial lives. The more we depend
on these systems — particularly for safety-critical or exoitally-critical applications — the more
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we must ensure that they are safe, reliable and well desjgmetthe less forgiving we can be of
failures, delays or inconveniences caused by the notofemmputer glitch.”

Unlike traditional engineering disciplines which are dbfirooted on centuries-old mathematical
theories, the mathematical foundations underlying Coempsitience are younger, and Computer
Scientists have yet to agree on how best to approach thermartal concepts and tasks in the
design of computing systems. The Civil Engineer knows éxaciw to define and analyse a math-
ematical model of the components of a bridge design so thaiitoe relied on not to fall down,
and the Aeronautical Engineer knows exactly how to definearalyse a mathematical model
of an aeroplane wing for the same purpose. However, Softimageneers have few universally-
accepted mathematical modelling tools at their disposathé words of the eminent Computer
Scientist Alan Kay, “most undergraduate degrees in conmggience these days are basically Java
vocational training.” But computing systems can be at leastomplex as bridges or aeroplanes,
and a canon of mathematical methods for modelling compwysgiems is therefore very much
needed. “Software’s Chronic Crisis” was the title of a p@p@nd widely-cited Scientific Ameri-
can article from 1994, and, unfortunately, its message irsnalid two decades later.

University Computer Science Departments face a socickbgicallenge posed by the fact that
computers have become everyday, deceptively easy-tohjsets. A single generation ago, new
Computer Science students typically had teenage backdsaspent writing Basic and/or Assem-
bly Language programs for their early hobbyist computerpagsion for this activity is what drove
these students into University Computer Science prograsnamel they were not disappointed with
the education they received. Their modern-day successatisecother hand — born directly into
the heart of the computer era — have grown up with the inteenbillion dollar computer games
industry, and mobile phones with more computing power tharspace shuttle. They often choose
to study Computer Science on the basis of having a passiarsing computing devices through-
out their everyday lives, for everything from socialisingwtheir friends to downloading the latest
films, and they often have less regard than they might to theiderations of what a University
Computer Science programme entails, that it is far more jilgtrusing computers.

There is a universal trend of large numbers of first-yearesttgltransferring out of Computer
Science programmes and into related programmes such as [@tdiies or Information Studies.
This trend, we feel, is often unjustified, and can be revelsed more considered approach to
modelling and the mathematical foundations of system desige which the students can connect
and feel at home with right from the beginning of their Unsigr education. This was the motiva-
tion behind producing a modern textbook, to be publishedgmynger in Autumn 2013, aimed at
teaching first-year undergraduate students the essergtabematics and modelling techniques for
computing systems in a novel and relatively light-weighywa

The book is divided into two parts. Part |, subtitilthematics for Computer Scienaetroduces
concepts from Discrete Mathematics which are in the culuiouof any University Computer
Science programme, as well as much which often is not. Thiemahis typically taught in
service modules by mathematicians, and new Computer Scsndents often find it difficult to
connect with the material presented in a purely mathematocdext. In this book, this material is
presented in an engaging and motivating fashion as the dlsisnputational thinking.



Part Il of the book, subtitleModelling Computing Systendevelops a particular approach to mod-
elling based on state transition systems. Such transiyistesis have always featured in the Com-
puter Science curriculum, but traditionally (and incregsy historically) only within the study
of formal languages. Here they are introduced as generaéhnugl devices, and languages and
techniques are explored for expressing and reasoning apstém specifications and (concurrent)
implementations. Although Part | covers twice as many pagd2art Il, much of the Mathematics
presented in Part | itself is used directly for modellingteyss, and forms the basis on which the
approach developed in Part Il is based.

The main benefit of mathematical formalisation is that systean be modelled and analysed
in precise and unambiguous ways; but formal precision cem la¢ a major pitfall in modelling
since it can compromise simplicity and intuition. In thisdbo therefore, the starting point is
intuition and examples, and precise concepts are developedthat basis. How and when to be
precise is certainly not less important to learn than precigself: the ability to give mathematical
proofs often does not depend on knowing precise formal diefiits and foundations. One can, for
example, write down recursive functions without having egise formal concept in mind.

There is a long standing tradition in disciplines like Plogdio teach modelling through little ar-
tifacts. The fundamental ideas of computational modellng thinking as well can better be
learned from idealised examples and exercises than frony neahworld computer applications.
This book builds on a large collection of logical puzzles amathematical games that require no
prior knowledge about computers and computing systemsetban be much more fun and some-
times much more challenging than analysing a device driver@iminal record database. Also,
computational modelling and thinking is about much moretjgt computers!

In fact, games play a far more important role in the book: {w@yide a novel approach to under-
standing computer software and systems which is proving teeloy successful both in theory and
practice. When a computer runs a program, for example, it & 3ense playing a game against
the user who is providing the input to the program. The pnograpresents a strategy which the
computer is using in this game, and the computer wins the glatmrrectly computes the result.
In this game, the user is the adversary of the computer andtigally trying to confound the
computer, which itself is attempting to defend its claimttithés computing correctly, that is, that
the program it is running is a winning strategy. (In SoftwErgyineering, this game appears in the
guise oftesting) Similarly, the controller of a software system that iaigs with its environment
plays a game against the environment: the controller toesdintain the system’s correctness
properties, while the environment tries to confound them.

This view suggests an approach to addressing three baditeprs in the design of computing
systems:

1. Specificationrefers to the problem of precisely identifying the task tesb&ved, as well as
what exactly constitutes a solution. This problem corresisao the problem of defining a
winning strategy.

2. Implementationor Synthesigefers to the problem of devising a solution to the task which
respects the specification. This problem corresponds tpriftdem of implementing a win-
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ning strategy.

3. Verification refers to the problem of demonstrating that the devisedtisolWoes indeed
respect the specification. This problem corresponds to rthielgm of proving that a given
strategy is in fact a winning strategy.

This analogy between the fundamental concepts in SoftwagenEering on the one hand, and
games and strategies on the other, provides a mode of conopatehinking which comes natu-
rally to the human mind, and can be readily exploited to erpdad understand Software Engi-
neering concepts and their applications. It also motiviteghesis that Game Theory provides a
paradigm for understanding the nature of computation.

There are over 200 exercises presented throughout the albokwhich have complete solutions
at the back of the book; as well as over 200 further exercisédseaends of the chapters whose
solutions are not provided. The exercises within the chraee often used to explore subtleties
or side-issues, or simply to put lengthy arguments into greagdix. The material in this book has
been used successfully for over a decade in first-year Desdfathematics and Systems Mod-
elling modules. Countless eyes have passed over the tekg tmousand students have solved its
exercises.

2 Labelled Transition Systems for Problem Solving

Consider the following presentation of Euclid’s algorittior computing the greatest common
divisor of two numberx andy:

f orever do

X:=x nody;
if x=0 then return vy;
y:=y nod Xx;

if y=0 then return x
od

To understand this program, you can hand-turn it, keepamktof the state of the variables:




In general, a computation — or more generally a process —eaegdresented by a Labelled Tran-

sition System (LTS), which consists of a directed graph, nelibe vertices represent states, and
the edges represent transitions from state to state, ardkaked by events. As shown above, an
LTS is typically presented pictorially, with the statesnmegented by circles and the transitions by
arrows between states labelled by actions.

As a further example, consider the following lamp process:

The lamp has a string to pull for turning the light on and offda reset button which resets the
circuit if a built-in circuit breaker breaks when the ligktan.

At any moment in time the lamp can be in one of three states:

e OFF—in which the light is off (and the circuit breaker is set);
e ON —in which the light is on (and the circuit breaker is set); and

e BROKEN — in which the circuit breaker is broken (and the light is off)

In any state the string can be pulled, causing a transititmthe appropriate new state (from the
state BROKEN, the new state is the same statedXEN). In the state @, the circuit breaker may
break, causing a transition into the statdXEN in which the reset button has popped out; from
this state, the reset button may be pushed, causing a toemisito the state ©r.

These simple examples demonstrate the simple, but efectbe of LTSs as a means of modelling
computing problems and real world objects. Of course, LTigsnat limited to such primitive
forms. They can be extended in a variety of ways to add fuittfermation, for example, notions
of time and space can be represented within states so tHatmeaand hybrid systems can be
described. In this respect, LTSs can be regarded as a gdoerallism for modelling any kind
of system, be it a computing system, a real world object, oorecarrent real-time system with
multiple components.

Introducing LTSs with Puzzles

Whilst the definition of a labelled transition system is sigipgly straightforward for such a pow-
erful formalism, getting students to engage with it regeliseme ingenuity. Fortunately, this is
equally straightforward by resorting to well-known redreaal puzzles.



The Man-Wolf-Goat-Cabbage Riddle

A man needs to cross a river with a wolf, a goat and a cabbagebblat is only large

enough to carry himself and one of his three possessionse saust transport these
items one at a time. However, if he leaves the wolf and the tpgather unattended,
then the wolf will eat the goat; similarly, if he leaves thegand the cabbage together

unattended, then the goat will eat the cabbage. How can thregebacross safely with
his three items?

This riddle was posed by Alcuin of York in the 8th century, andre recently tackled by Homer
Simpson in a 2009 episode of The Simpsons titled Gone MaggeG

This puzzle can be solved by modelling it as an LTS. A statéefLil S will represent the current
position (left or right bank) of the four entities (man, wajoat, cabbage); and there will be four
actions representing the four possible actions that thecaarake:

e m =the man crosses the river on his own;
e w = the man crosses the river with the wolf;
e ¢ =the man crosses the river with the goat; and

e ¢ =the man crosses the river with the cabbage.




The initial state iéMWGC ] (meaning all are on the left bank of the river).

We wish to find a sequence of actions which will lead to th taVIWGC] (meaning all are on
the right bank of the river).

However, we want to avoid going through any of the six dangesiates:

(WGC: M) (GC:MW) (WG:MC)
(MC:WG) (MW:GC) (M:WGC)

There are several possibilities (all involving at least@ssings), for example

g, m,w,g,c,m,g.

The Missionaries and Cannibals Riddle

Three missionaries are travelling with three cannibals wilgey come upon a river.
They have a boat, but it can only hold two people. The rivedledfiwith piranha,
so they all must eventually cross in the boat; no one can dtassiver by swimming.
The problem is: should the cannibals ever outnumber theiomases on either side
of the river, the outnumbered missionaries would be in dembte. Each missionary
and each cannibal can row the boat. How can all six get acrbsgiver safely?

Similarly to the Man-Wolf-Goat-Cabbage riddle, this puezehn also be solved using an LTS, as
depicted in Figure 1. Each state of the LTS records the positdof the people (which banks they

are on) and which side holds the boat. The groups on the twhkshare depicted side-by-side

divided by wiggly lines representing the river, with the gpaholding the boat enclosed in paren-
theses. We only consider the safe states where the candibalst outnumber the missionaries.

There are five possible actions:
¢ m (a missionary crosses alone);
e mm (two missionaries cross together);
e ¢ (a cannibal crosses alone);
e cc (two cannibals cross together); and

e mc (a missionary and a cannibal cross together).
Notice that all of the transitions are drawn bi-directidpahs every transition can clearly be re-
versed.

The group start in the top-left state in which the whole graupn the left bank, and they wish to
get to the bottom-right state in which they are all on the trigdink. It is not hard to find a such
path through the LTS which involvdd crossings.
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Figure 1: The Missionaries and Cannibals riddle as an LTS.

The Water Jugs Riddle

In the 1995 film Die Hard: With a Vengeance, New York Detectiodin McClane (played by
Bruce Willis) and Harlem dry cleaner Zeus Carver (played &gn8el L. Jackson) had to solve the
following problem in order to prevent a bomb from explodin@aublic fountain.

Given only afive-gallon jug and a three-gallon jug, neithé@vany markings on them,
they had to fill the larger jug witlexactlyfour gallons of water from the fountain, and
place it onto a scale in order to stop the bomb’s timer and pré¢\disaster.

How did they manage this feat?



This riddle was posed by Abbot Albert in the 13th Century.

A state of the system underlying this riddle consists of a paintegers(i, j) with 0<:<5 and
0<;j<3, representing the volume of water in the 5-gallon and 3eggligsA and B, respectively.
The initial state i50, 0) and the final state you wish to reach(ds0).

There are six moves possible from a given statg):

_. fill
(l,j) — (Z7 3)

tyA
i) " (0,5)

fillA
B

= = =
5 . 53
V I I
o o o
SN—" N —

D

tyB
i) R (i0)

if j>0>

. Ato .
@i.) *? max (0, i4j—3), min(3,i+) if i>0andj<3
BtoA

i) — min(5,i+7), max(0, i+j—5) if i<5andj>0

Drawing out the LTS, we get the followirigstep solution:

fillA AtoB emptyB AtoB
(0,0) = (5,0) 2% (2,3) T(2,0) 2% (0, 2)

fillA emptyB
TR (5,2) 298 (4 3) *TPYE o),

These simple riddles and puzzles allow students to easalypgand understand the powerful con-
cept of labelled transition systems. After seeing only a &swmples, they are able to model
straightforward systems by themselves using LTSs. Oncataitive understanding has been es-
tablished, the task of understanding the mathematics 8¢fi8s becomes less foreboding.

3 Bisimulation for Dummies

Beyond having a formalism for representing and simulatthg behaviour of) a system, we want
to be able to determine if the system is correct. In its mosidfarm, this amounts to determining
if the system matches its specification, where we assumédtiathe system and its specification
are given as states of some LTS. For example, consider thentvdels of a vending machirig
andV; depicted in Figure 2, wherg, is taken to represent the specification of the vending machin
while V5 is taken to represent its implementation.

Clearly the behaviour of; is somehow different from the behaviour &f: aftertwice inserting
a 10p coin into/;, we areguaranteedo beableto press the coffee button; thisnst true of V5.
The question isHow do we formally distinguish between processes?
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Figure 2: Two Vending Machine models

The formal definition of bisimilarity

A traditional approach to this question relies on deterngni these two states are related by a
bisimulation relationR as defined as follows.

A binary relation R over states of an LTS is a bisimulation relation if, and orfly i
wheneverz, y) € R:

e if z — 2/ for somer’ anda, theny — 3/ for somey’ such that(z’, y/') € R; and

e if y — 4/ for somey’ anda, thenz — 2’ for somer’ such that(z’, y') € R.

Simple inductive definitions already represent a majorlehgk for undergraduate university stu-
dents; so it is no surprise that this coinductive definitiba bisimulation relation is incomprehen-
sible even to some of the brightest postgraduate studeritieast on their first encounter with it.

However, there is a straightforward way to explain the iddaisimilarity to first-year students — a

way which they can readily grasp and are happy to exploreiadded, play with. The approach

is based on the following game.

The Copy-Cat Game

This game is played between two players, typically refeteds Alice and Bob. We start by
placing tokens on two states of an LTS, and then proceed lasvil

1. The first player (Alice) chooses one of the two tokens, andes it forward along an arrow
to another state; if this is impossible (that is, if thereraearrows leading out of either node
on which the tokens sit), then the second player (Bob) isadedIto be the winner.

2. The second player (Bob) must move titbertoken forward along an arrow which hdse
same labebs the arrow used by the first player; if this is impossiblentthe first player
(Alice) is declared to be the winner.
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This exchange of moves is repeated for as long as neithegpdieys stuck. Note that Alice gets to
choose which token to mowevery time it is her turnshe does not have to keep moving the same
token. If Bob ever gets stuck — ie, cannot copy a move made iog Althen Alice is declared to be
the winner; otherwise Bob is declared to be the winner (itigalar, if the game goes on forever).

Alice, therefore, wants to show that the two states holdakgns are somehow different, in that
there is something that can happen from one of the two stdtehiwannot happen from the other.
Bob, on the other hand, wants to show that the two states @asathe: that whatever might happen
from one of the two states can be copied by the other state.

It is easy to argue that two states should be consideredagqoiexactly when Bob has a winning
strategy in the Copy-Cat Game starting with the tokens onviloestates in question; and indeed
this is taken to be the definition of when two states are egpakifically, when an implementation
matches its specification.

As an example, consider playing the game on the following.LTS

Starting with tokens on statésand X, thefirst player (Alice) has a winning strategy:

¢ Alice can move the token ofi along theu-transition toV/.
e Bob must match this by moving the token @nalong thea-transition toY.
e Alice can then move the token dnhalong thec-transition to~.

e Bob will be stuck, as there is nstransition fromV .

This example is a simplified version of the vending machiregxe; and a straightforward adap-
tation of the winning strategy for Alice will work in the garstarting with the tokens on the states
Vi andV;. We thus have an argument as to why the two vending machieeadiféerent.

Relating winning strategies to bisimilarity

Whilst this notion of equality between states is partidylaimple and even entertaining to explore,
it coincides precisely with the complicated coinductivéimion of when two states are bisimilar.
Furthermore, seeing this is the case is almost equallygsiifarward.

e Suppose we play the Copy-Cat Game starting with the toketwostates~ and F' which
are related by some bisimulation relatiBn |t is easy to see that Bob has a winning strategy:
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whatever move Alice makes, by the definition of a bisimulatielation, Bob will be able to
copy this move in such a way that the two tokens will end up atest?” and F’ which are

again related by?; and Bob can keep repeating this for as long as the game thasts)ing

that he wins the game.

e Suppose now thak is the set of pairs of states of an LTS from which Bob has a wigni
strategy in the Copy-Cat Game. It is easy to see that thisisimilation relation: suppose
that(z,y) € R:

— if = 2/ for somez’ anda, then taking this to be a move by Alice in the Copy-Cat
Game, we lety - y' be a response by Bob using his winning strategy; this would
mean that Bob still has a winning strategy from the resulpag of states, that is
(.T/, y/) E R’

— if y = 4 for somey’ anda, then taking this to be a move by Alice in the Copy-Cat
Game, we let: — 2’ be a response by Bob using his winning strategy; this would

mean that Bob still has a winning strategy from the resulpag of states, that is
(«',y') € R.

We have thus taken a concept which baffles postgraduatercesgadents, and presented it in a
way which is well within the grasp of first-year undergradustiudents.

Determining who has the winning strategy

Once the notion of equivalence is understood in terms of wgnstrategies in the Copy-Cat Game,
the question then arises as to how to determine if two pdatictates are equivalent, ie, if Bob has
a winning strategy starting with the tokens on the two givieates. This isn’'t generally a simple
prospect; Games like Chess and Go are notoriously diffioydtay perfectly, as you can only look
ahead a few moves before getting caught up in the vast nunhlpaisdions into which the game
may evolve.

Here again, though, we have a straightforward way to detesmihen two states are equivalent.
Suppose we could paint the states of an LTS in such a way thaharstates which are equivalent
— that is, from which Bob has a winning strategy — are paintedsame colour. The following
property would then hold.

If any state with some colout’ has a transition leading out of it into a state with
some colouC’, theneverystate with coloutC' has an identically-labelled transition
leading out of it into a state coloured’.

That is, if two tokens are on like-coloured states (meanirag Bob has a winning strategy) then
no matter what move Alice makes, Bob can respond in such a w&y lkeeep the tokens on like-
coloured states (ie, a position from which he still has a wigistrategy). We refer to such a special
colouring of the states game colouring

To demonstrate, consider the following LTS.
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At the moment all states are coloured white, and we mightidensvhether this is a valid game
colouring. It becomes readily apparent that it is not, assthite statet can make a&-transition to
the white staté whereas none of the other white states2( 3, 5 and6) can do likewise. In fact,
in any game colouring, the statemust have a different colour from 2, 3, 5 and6. Hence we

paint it a different colour from white; in order to presentbxample in black-and-white, we shall
paint the state with the colour “checkered.”

We again consider whether this is now a valid game colourkgain it becomes apparent that it
is not, as the white stat@sand6 havea-transitions to a checkered state, whereas none of the other
white statedl, 2 and5 do. And in any game colouring, the stateand6 must have a different

colour from1, 2 and5. Hence we paint these a different colour from white and caesk we shall
choose the colour “swirly.”
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We again consider whether this is now a valid game coloufiihgs time we find that it is, as every
state can do exactly the same thing as every other state sathe colour:

e every white state has antransition to a white state and artransition to a swirly state;
e every swirly state has antransition to a swirly state and artransition to a checkered state;

e every checkered state has-ransition to a white state.

At this point we have a complete understanding of the game,can say with certainty which
states are equivalent to each other. This is an exerciseninst-year students can happily carry
out on arbitrarily-complicated LTSs, which again givestdesent to the effectiveness of using
games to great success in imparting difficult theoreticalcepts to first-year students — in this
case the concept of partition refinement.

4 Conclusion

Students can quickly and easily understand the modellirggpofputing systems if it is done in a
suitable way. Starting with some formal semantics and realdvexamples, in our experience,
makes the task very daunting, difficult and generally urgdeafor students. However, appealing
to their existing understanding of how the world works, gsmuzzles as a medium, students can
quickly become comfortable using mathematical concepth as LTSs. A similar lesson is learnt
when it comes to teaching verification: starting with theniat definition of bisimulation (or
similar) is an uphill battle from the start, whereas staytirom games like the Copy-Cat Game,
life is much easier for everyone.

We have used these approaches for over a decade to sudgessitih the modelling and verifica-
tion of computing systems to first-year students of our ug@eluate course. This has eventually
lead to the production of our new modern textbook, to be gkl by Springer in Autumn 2013,
aimed at teaching first-year undergraduate students tkategsnathematics and modelling tech-
niques for computing systems in a novel and relatively hgktght way.
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