Bob’s Concise Introduction to Doxygén

by Robert S Laramée
Visual and Interactive Computing Group
Department of Computer Science
Swansea University
Swansea, Wales, UK

February 14, 2011

1 Comment Standard

The general rules for commenting your source code are as follows:

1. File, class, and method comments go into the head®erfiles (as opposed to the implementatiorpp
files).

2. Header files begin with a comment containing
(@) \fi | e the name of the file, e.g., RSTriangle.h
(b) \aut hor the author of the file, e.g., Robert S. Laramee
(c) \dat e the date this file was created, e.g., 29 Oct 2009, and optionally
(d) \see for names of related files.

(e) \bri ef for brief descriptions of classes. Add an empty line followed by a more detdéscrip-
tion of your class.

3. All multi-line comments start with the starting sequehee on a line by itself and end with the termi-
nating sequence/ on line by itself.
Exception: single line comments.

4. All classes are accompanied by a meaningful description.of one orsantences. The general respon-
sibilities are given.

5. All methods havegar am and@ et ur n tags.
Exception: there are no method parameters or nothing is returned.

6. Public methods appear first, then private methods, and finally priviete#anbers with explicpubl i c:
andpri vat e: identifiers at the beginning of each group.

7. Within each public and private group of methods, methods appear inogipdel order.
Exception: accessor method3et () andSet ()) are at the top.
2 Diagrams

Doxygen has the amazing ability to automatically generate class hierarchyoladocation diagrams (also
called a dependency graph) from your software. Doxygen usesd adthed dot from GraphViz to generate

*Started on Friday 14 Sep 2001. Prepared Wit
tr.s.laramee “at” swansea.ac.uk

advanced diagrams and graphs. GraphViz is an open-source;ptatfssm graph drawing program and can
be found atht t p: / / www. gr aphvi z. or g/ .

After downloading and installing the dot tool $éAVE_DOT to YES in your doxygen configuration file to use
it. For more details visiht t p: / / www. doxygen. or g/ and click onManual and then click orGraphs
and diagrams.

3 Outputting the Source Code

Doxygen provides the user with the option of outputting the source codg alith the HTML output. This
option is extremely useful for code reviews. Set 8@JRCE_BROANSER and| NLI NE_SOURCES tags both
to YES in your doxygen configuration. For more details visitt p: / / www. doxygen. or g/ and click on
Manual and then click orGetting started.

4 Doxygen Examples

These comment conventions are based on doxygen. Preparing souregorocessed by doxygen is easy.
Comment blocks delimited by** and*/ must be added before each item for which you wish to generate
documentation. Summarizing, source code is documented with the following:

1. each class definition —explaining the purpose of the class

2. each member function —explaining what the function does

3. each member variable —explaining what the variable means

4. each type definition (enums) —explaining what the type represents

Within a comment block you can use tags to explain function parameters, vetiues, and more. The three
most important doxygen tags are:

\par am—explains function parameter
\r et ur n —describes return value
\see —a reference to a function name, variable name, document, or URL.

4.1 Hereisan example of how a method is commented in doxygen:

* Calculate the center point of a triangle. This nethod
* has been ported fromthe Visualization Toolkit.
* \see www. ki tware.com vtkTriangle.h

* \param coordO the 1st x,y,z coordinate of a triangle
» \param coordl the 2nd x,y,z coordinate of a triangle
* \param coord2 the 3rd x,y,z coordinate of a triangle
* \return the triangle center as an x,y,z coordinate
*/
Coord3D< Float > GetTriangl eCent er (
const Coord3D< Fl oat >& coordO,
const Coord3D< Fl oat >& coordl,
const Coord3D< Fl oat >& coord2);

4.2 Hereisan example of how a classis documented in doxygen:

| **
* SUTriangle is intended to provide nmethods to perform
* conmon operations on a triangle in 3D space. It is

* intended to be highly legible, highly generalized, and
* highly reusable. Sonme nethods have been ported from The
* Visualization Toolkit.

* \see http://ww.kitware.com

*x [

class SUTriangle {

b

It is also possible to use HTML tags in the comment blocks to create elaborajétiktsand italic text eté.
When documenting your code please keep in mind that other developersawgllth understand what your
classes and methods do by reading the documentation generated frooogouents. They do not have any
knowledge of your implementation, thus your comments must explain everyttabhgelps in understanding
your code. The examples show how to comment a class so that usefuheoiation can be generated.

!For detailed information please seet p: / / www. doxygen. or g/ .

4.3

[*x*
*

*

L I

*

*/

A Complete Header File Example:

\file hell 0. h

\aut hor Sitsofe Weeler

\date 29 Cct 2009

\'see ‘*The Qpen@. Progranming Guide’’ Fifth Edition Page 18

\brief Header file for sinple "hello world" OpenGL rectangle exanple.
A detail ed description of the Hello class goes here.

This is a Class to create an OpenG. triangle. It expects glutlnit
to have been called

class Main {

public:

[* %

* Creates the GL window (with hello as the title) and starts
* the event | oops.

* \see glutlnit()

\param argc -the nunmber of paraneters passed to the program
\param argv -an array of cstrings containing paraneters

passed to the program First paranmeter is the nane the
* program was called wth.
* |
static void main(int argc, char **argv);

* X

private:
[**
* |[nitialise the Qpen@G. state machine.
* |
static void init(void);

[**

* Renders the rectangle.
* |

static void display(void);

4.4 A Complete Class File Example:

[*x*

* @ile hel | o. cpp

* @ut hor Sitsofe Weeler

* @lat e 29 Cct 2009

@ee hello.h for class docunenation

Sinple "hello world" Open@ rectangl e exanpl e.
/

* % X

#i ncl ude <@/ gl . h>
#i ncl ude <@/ freegl ut. h>
#i ncl ude "hell 0. h"

void Main::init(void) {

/+x select clearing (background) col our =/
glCearColor(0.0, 0.0, 0.0, 0.0);

/*+ initialize view ng val ues */

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

voi d Main::display(void) {

/+*x clear all pixels */
gl O ear(G_CO.OR BUFFER BI T);

[**

* Draw white polygon (rectangle) with corners at
* (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)

*/

gl Color3f(1.0, 1.0, 1.0);

gl Begi n(GL_PCOLYGQON) ;

gl Vertex3f (0.25, 0.25, 0.0);
gl Vertex3f(0.75, 0.25, 0.0);
gl Vertex3f(0.75, 0.75, 0.0);
gl Vertex3f(0.25, 0.75, 0.0);

gl End() ;

/+*x Don’t wait! Start processing buffered OpenCGL routines x/
gl Fl ush();

}
void Main::main(int argc, char *xargv) {

[*x

* Declare initial wi ndow size, position, and display node (single
* buffer and RGBA). Open window with "hello" inits title bar. Cal
* initialization routines. Register callback function to display
* graphics. Enter nmin | oop and process events.

*/

glutlnit(&argc, argv);

glutlnitDispl ayMde(GLUT_SI NGLE | GLUT_RGB)

gl utl ni t WndowSi ze(250, 250);

gl ut I ni t WndowPosi tion(100, 100);

gl ut Cr eat eW ndow(" hel | 0");
init();
gl ut Di spl ayFunc(di spl ay) ;
gl ut Mai nLoop() ;

}

[x*

* Programentry point. Initialise glut and call Miin class.

*

* @aram argc -the nunber of paraneters passed to the program

* @aramargv -an array of cstrings containing paraneters passed to the
* program First paraneter is the nane the programwas called
* wit h.

* @eturn -0 on success.

*/

nt main(int argc, char *xargv) {

Mai n: : mai n(argc, argv);
return O;

5 Acknowledgements

Understanding undocumented code is difficult, time-consuming, and carbevmpossible. Thanks to Sitsofe
Wheeler for valuable discussions on this topic. Feedback on this docismenonly welcome but encouraged.
Please send correspondence to the first author. These code coromeitons are to be used in conjunction
with the coding conventions [1].

References

[1] R.S. Laramee. Bob’s Concise Coding Conventiafi$)(Advances in Computer Science and Engineering
(ACSE), 4(1):23-26, 2010. (available online).

